首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Catalytic and regulatory properties of the major form of cyclic GMP phosphodiesterase (3':5'-cyclic-GMP 5'-nucleotidohydrolase, EC 3.1.4.35) from rat lung were studied. The enzyme partially purified by a DEAE-Sepharose chromatography displayed a much higher affinity toward cyclic GMP than toward cyclic AMP, the apparent Km values being 5.7 microM and 482 microM for the guanylic and the adenylic cyclic nucleotide, respectively. In contrast, the V value for cyclic AMP was about 3-times higher than the V value for cyclic GMP. Linear double reciprocal plots of initial velocity were observed with each cyclic nucleotide. From 10(-8) to 3.3 X 10(-6) M, cyclic GMP did not change the hydrolysis of 1 or 10 microM cyclic [3H]AMP, while it became inhibitory at higher concentrations. In contrast with a calmodulin-sensitive phosphodiesterase prepared from rat brain, the lung enzyme was not stimulated by a heat-stable Ca2+-dependent factor from rat lung or by rat brain calmodulin or by lipids including fatty acids and lysophosphatidylcholine. Various unsaturated 18- and 20-carbon fatty acids inhibited at varying degrees the cyclic GMP phosphodiesterase from rat lung. The inhibitory potency increased with the number of double bonds in the hydrocarbon chain. In contrast, the methyl esters of the unsaturated fatty acids and the saturated fatty acids of variable hydrocarbon chain lengths had no appreciable effects. A linear Hill plot of phosphodiesterase inhibition with a slope of unity was obtained with arachidonic acid up to 30 microM, suggesting only one type of inhibitory site. In this range of concentrations the inhibition was entirely reversible. Kinetics analysis demonstrated that up to 30 microM arachidonic acid was a purely competitive inhibitor with an apparent Ki of 20 microM. Over 30 microM, the Hill coefficient increased progressively, indicating the binding to other inhibitory sites, while the reversibility disappeared.  相似文献   

2.
A series of truncated atrial natriuretic peptide analogs were examined as a means of defining the structural requirements for receptor occupancy and stimulation of cyclic GMP accumulation in bovine aortic smooth muscle cells. It was determined that deletion of amino acids from the carboxyl and/or amino termini of the peptides diminished their ability to increase cyclic GMP levels. Deletion of amino acids from the carboxyl terminus had the greatest effect, and atrial natriuretic peptide analogs lacking the carboxyl-terminal phenylalanyl-arginyl-tyrosine tripeptide were 100-1000-fold less active than parent compounds in stimulating intracellular cyclic GMP accumulation. In marked contrast to the cyclic GMP effects, deletion of amino- and/or carboxyl-terminal amino acids had only minor effects on the affinity of the peptides for specific smooth muscle cell-associated receptors. Peptide analogs lacking the phenylalanyl-arginyl-tyrosine tripeptide bound to receptors with an affinity only 1.1-5-fold weaker than the parent compounds. Thus, there was no correlation between apparent receptor binding affinity of atrial natriuretic peptide analogs and potency of these same peptides for stimulating intracellular cyclic GMP accumulation. Furthermore, analogs that bound to receptors and failed to elicit significant cyclic GMP responses did not antagonize or modulate increases in cyclic GMP induced by parent compounds. These data are most consistent with the existence of multiple subpopulations of atrial natriuretic peptide receptors on aortic smooth muscle cells.  相似文献   

3.
Low- and high-affinity binding sites for cyclic GMP were found to be associated with the cyclic AMP-dependent protein kinase (ATP: protein phosphotransferase, EC 2.7.1.37) from human tonsillar lymphocytes, but neither of them was identical with the cyclic AMP binding site. The enzyme activated by cyclic GMP phosphorylated the same site of calf thymus H2b histone as the cyclic AMP activated enzyme; however, more complex kinetics of activation were found with cyclic GMP. Two classes of cyclic GMP binding site were demonstrated by kinetic analysis of cyclic [3H]GMP binding in the enzyme preparations eluted by 0.1 M potassium phosphate (pH 7.0) from DEAE cellulose. The high-affinity cyclic GMP binding site (Kd about 4 . 10(-8) M) belonged to some complex form of the protein kinase, as evidenced by the mutual inhibition of cyclic AMP binding and high affinity cyclic GMP binding. However, the high-affinity cyclic GMP binding site disappeared on Sephadex G-100 gel chromatography of the enzyme preparation, whereas the cyclic AMP binding activity was recovered quantitively as separate fractions. The low-affinity cyclic GMP binding site (Kd 2--5 . 10(-6) M) was demonstrated by the inhibitory effect of 10(-5) M cyclic GMP on cyclic AMP binding in each cyclic AMP binding fraction obtained by gel chromatography. However, cyclic AMP did not inhibit the binding of cyclic GMP to the low-affinity binding site.  相似文献   

4.
—Guanosine 3′,5’cyclic monophosphate (cyclic GMP) levels in incubated slices of mouse cerebellum are increased 10-fold by glutamate and two-to three-fold by glycine or γ-aminobutyric acid (GABA). Glutamate also produces a 10-fold increase in adenosine 3′,5’cyclic monophosphate (cyclic AMP) in the same tissue. However, GABA decreases cyclic AMP levels 30-40 per cent, and glycine produces only a transient 50 per cent accumulation of this cyclic nucleotide. Theophylline slightly augments the accumulation of cyclic GMP produced by all three amino acids but markedly attenuates the accumulation of cyclic AMP produced by glutamate. In the absence of Ca2+, none of the three amino acids has any effect on cyclic GMP levels, and glutamate produces only a 50 per cent rise in cyclic AMP levels. The decrease of cyclic AMP levels produced by GABA is not affected by theophylline or by the absence of Ca2+. These data suggest an involvement of both cyclic GMP and cyclic AMP in the neurochemical actions of glutamate, GABA and glycine.  相似文献   

5.
In view of the recently proposed hypothesis of biologic regulation through opposing influences of cyclic AMP and cyclic GMP, and since cyclic AMP is a well-known allosteric activator of phosphofructokinase (ATP:D-fructose-6-phosphate 1-phosphotransferase, EC 2.7.1.11), the effect of cyclic GMP on the activity of this enzyme from several rat tissues was investigated. It was found that cyclic GMP exerted an inhibitory effect on the activity of rat heart and skeletal muscle phosphofructokinase. This effect was most pronounced under conditions in which the enzyme was partially inhibited by ATP or by citrate. Cyclic GMP also antagonized the deinhibitory action of cyclic AMP and other allosteric activators, such as glucose 1,6-bisphosphate or AMP, on the ATP or citrate-inhibited heart or muscle phosphofructokinase. In contrast to the heart and skeletal muscle phosphofructokinase, the adipose-tissue enzyme was not affected by cyclic GMP to any significant degree. The antagonistic action of cyclic GMP to the activation of heart-phosphofructokinase, may suggest a mechanism by which the activity of phosphofructokinase is synchronized with the activity of glycogen phosphorylase, as a result of acetylcholine action in heart, to achieve a decrease in total glycogenolysis and glycolysis.  相似文献   

6.
7.
The primary structure of the gamma-subunit of cyclic GMP phosphodiesterase was determined by parallel analysis of the amino acid sequence of the protein and nucleotide sequence of the corresponding cDNA. The enzyme gamma-subunit contains 87 amino acid residues, its N-terminal amino group being acetylated.  相似文献   

8.
This study examined the binding of both cyclic AMP and cyclic GMP to receptor proteins in particulate and soluble subfractions of renal cortical homogenates from the golden hamster. The binding of both nucleotides was compared to subsequent effects of both nucleotides on the phosphorylation of histone from identical fractions. Cyclic AMP binding and cyclic AMP-dependent protein kinase activity predominated in the cytosol, with some binding and enzyme activity also detected in particulate fractions. Cyclic GMP and cyclic GMP-dependent protein kinase activity could only be demonstrated in cytosolic fractions and represented only 20-30% of cyclic AMP-dependent activity in this fraction. Binding of both nucleotides was highly specific, however, cyclic AMP showed some interaction with cyclic GMP binding. Evidence suggesting that each nucleotide interacts with a specific protein kinase was as follows: both the binding activity of the cyclic nucleotides and their combined protein kinase activity show additivity; cyclic AMP and cyclic GMP binding activity could be separated on sucrose gradients; cyclic AMP and cyclic GMP protein kinase activity could be separated with Sephadex G-100 chromatography, after preincubation of homogenate supernatants with either cyclic AMP or cyclic GMP. The results demonstrate the presence of both cyclic AMP- and cyclic GMP-dependent protein kinase in renal cortex.  相似文献   

9.
Amylase secretion and changes in the levels of cyclic AMP and GMP were studied in rabbit parotid gland slices incubated in vitro with a variety of neurohumoral transmitters, their analogs and inhibitors. Cyclic GMP levels increased 8-fold 5 min after exposure to carbachol (10(-4) M), without a change in cyclic AMP levels; amylase output also rose. These effects were completely inhibited by muscarinic blockade with atropine, but were unaffected by alpha-adrenergic blockade with phenoxybenzamine. Epinephrine (4 - 10(-5) M) produced a rapid increase in the levels of both cyclic nucleotides and in amylase release. The increase in cyclic GMP level was inhibited by previous exposure of the slices to phenoxybenzamine, while the cyclic AMP rise was prevented by the beta-blocking agent, propranolol. Pure alpha-adrenergic stimulation with methoxamine (4 - 10(-4) M) produced modest elevations in cyclic GMP content and amylase output, effects blocked by pre-treatment of slices with either atropine or phenoxybenzamine. At a concentration of 4 - 10(-6) M, isoproterenol (a beta-agonist) failed to affect cyclic GMP levels, but promptly stimulated increases in cyclic AMP levels, and after a short lag, amylase secretion. At a higher dose (4 - 10(-5) M) isoproterenol produced elevations in the levels of both nucleotides. The carbachol-induced effects on cyclic GMP content and amylase release were greatly potentiated by the addition of isoproterenol (4 - 10(-6) M). These data strongly suggest that cholinergic muscarinic agonists and alpha-adrenergic agonists stimulate amylase output in rabit parotid gland by mechanisms involving cyclic GMP. The atropine-sensitive intracellular events effected by alpha-stimulation may be dependent upon endogenous generation of acetylcholine. Both cyclic nucleotides seem to be required for the early rapid secretion of amylase. The unique responses achieved by the combination of carbachol and isoproterenol suggest that isoproterenol may increase the sensitivity of this tissue to the effects of cholinergic stimuli.  相似文献   

10.
Cyclic GMP concentration and cyclic GMP phosphodiesterase activity were studied in rat mothers and fetuses at 17, 19 and 21 days of intrauterine life and 0, 1, 4, 10, 15,20, 30 and 45 days after birth. During this developmental period, the increase in cyclic GMP concentration was discrete and the value in 15-day-old rats was already similar to the adult level. Cyclic GMP phosphodiesterase activity increased from 17- to 19-day fetuses and was significantly reduced in 21-day fetuses, neonates, and 1-day-old rats. This reduction may be a result of fetal endocrine preparation for parturition. During postnatal development, cyclic GMP phosphodiesterase activity increased in a parallel way in the limbic system, corpora striata, cerebral hemispheres, and diencephalon, reaching maximal level between 20 and 30 days after birth, and then decreasing to the adult value. The highest activity was found in corpora striata and the lowest in diencephalon. Cerebellar cyclic GMP phosphodiesterase activity was very high in the 4-day-old rat (257% of adult value) and diminished significantly in the 10-day-old rat with no subsequent changes. Kinetic analysis of the enzyme during postnatal forebrain development showed an increase in both the Vmax and the apparent Km. A decrease in the enzyme's Vmax was observed only in the cerebellum.The importance of cyclic GMP phosphodiesterase regulation of cyclic GMP concentrations in the brain during development is discussed.  相似文献   

11.
Low- and high-affinity binding sites for cyclic GMP were found to be associated with the cyclic AMP-dependent protein kinase (ATP: protein phosphotransferase, EC 2.7.1.37) from human tonsillar lymphocytes, but neither of them was identical with the cyclic AMP binding site.The enzyme activated by cyclic GMP phosphorylated the same site of calf thymus H2b histone as the cyclic AMP activated enzyme; however, more complex kinetics of activation were found with cyclic GMP.Two classes of cyclic GMP binding site were demonstrated by kinetic analysis of cyclic [3H]GMP binding in the enzyme preparations eluted by 0.1 M potassium phosphate (pH 7.0) from DEAE cellulose. The high-affinity cyclic GMP binding site (Kd about 44 · 10?8 M belonged to some complex form of the protein kinase, as evidenced by the mutual inhibition of cyclic AMP binding and high affinity cyclic GMP binding. However, the high-affinity cyclic GMP binding site disappeared on Sephadex G-100 gel chromatography of the enzyme preparation, whereas the cyclic AMP binding activity was recovered quantitively as separate fractions. The low-affinity cyclic GMP binding site (Kd 2–5 · 10?6 M) was demonstrated by the inhibitory effect of 10?5 M cyclic GMP on cyclic AMP binding in each cyclic AMP binding fraction obtained by gel chromatography. However, cyclic AMP did not inhibit the binding of cyclic GMP to the low-affinity binding site.  相似文献   

12.
A number of phototransducing proteins in vertebrate photoreceptors contain a carboxyl terminal -CXXX motif (where C = cysteine and X = any amino acid), known to be a signal sequence for their post-translational prenylation and carboxyl methylation. To study the roles of these modifications in the visual excitation process, we have utilized an intravitreal injection method to radiolabel the prenylated proteins of rat retinas in vivo. We showed that two of the major prenylated polypeptides in the rod outer segments are the PDE alpha and PDE beta subunits of cyclic GMP phosphodiesterase PDE alpha and PDE beta subunits of cyclic GMP phosphodiesterase (PDE). By chromatographic analyses of the amino acid constituents generated by exhaustive proteolysis of PDE alpha and PDE beta, we further demonstrated that they are differentially prenylated by farnesylation and geranylgeranylation, respectively. While a number of proteins ending with the -CXXX sequence have already been reported to possess either a farnesyl or a geranylgeranyl group, PDE is the first enzyme shown to be modified by both types of prenyl groups. The prenyl modification of PDE most likely plays a major role in membrane attachment and in correctly positioning the PDE molecule for phototransduction.  相似文献   

13.
A cholera toxin substrate regulates cyclic GMP content of rat pinealocytes   总被引:2,自引:0,他引:2  
The adrenergic regulation of cyclic GMP in isolated pinealocytes was investigated. In this cell, norepinephrine stimulates cyclic GMP and cyclic AMP greater than 100-fold by activating both alpha 1- and beta-adrenoceptors. beta-Adrenergic activation is a requisite event and is potentiated by alpha 1-adrenergic activation (Vanecek, J., Sugden, D., Weller, J. L., and Klein, D. C. (1985) Endocrinology 116, 2167-2173). The current study found that cholera toxin could substitute for beta-adrenergic agonists in stimulating pinealocyte cyclic GMP content, as has been found to be the case for cyclic AMP. Treatment with cholera toxin alone (1 microgram/ml for 90 min) had a small effect (2- to 4-fold increase) on cyclic GMP; addition of the alpha 1-adrenergic agonists, phenylephrine, cirazoline, or methoxamine to cholera toxin-treated cells rapidly (peak at 5 min) caused a further 30- to 300-fold increase. The alpha 1-adrenergic agonists had little effect by themselves at concentrations which potentiated the effects of cholera toxin. The potentiating effect of phenylephrine was inhibited nearly completely by an alpha 1-adrenergic antagonist, but not by either an alpha 2- or beta-adrenergic antagonist. The purified cholera toxin subunits A and B did not stimulate cyclic GMP either alone or in the presence of phenylephrine. Furthermore, the potentiating action of phenylephrine was observed following 90 min but not 20 min of cholera toxin pretreatment. these results suggest that the regulation of cyclic GMP levels in the pineal gland involves an Ns-like GTP-binding regulatory protein. This is of interest because it is the first indication that cyclic GMP is regulated by such a GTP-binding protein in nonretinal tissue. It remains to be determined whether the mechanisms involved in the transmembrane regulation of cyclic AMP and cyclic GMP in any other tissue are similar.  相似文献   

14.
A high-speed supernatant of rat liver extract displayed multiple forms of cyclic nucleotide phosphodiesterase (EC 3.1.4.17). One of the forms catalyzed the hydrolysis of cyclic AMP and cyclic GMP, with approximately comparable facility. One salient feature of the enzyme is that at micromolar concentrations, cyclic GMP stimulated the hydrolysis of cyclic AMP, but not vice versa. Another is that the activity of phosphodiesterase varied as a function of enzyme concentration in the assayed system: the enzyme activity was higher at low than at high enzyme concentrations. A concentrated enzyme was not stimulated by cyclic GMP but was stimulated by cyclic GMP upon dilution of the enzyme. Conversely, stimulation of the enzyme by cyclic GMP could be reversed by increasing the enzyme concentration. The cyclic GMP-stimulated cyclic AMP phosphodiesterase was partially purified by a continuous sucrose density gradient. The apparent change of phosphodiesterase activity as a function of enzyme concentration was also observed after partial purification by the sucrose density gradient. High enzyme concentrations favored the aggregated form of phosphodiesterase, whereas low concentrations favored the dissociated form. Dilution of the enzyme shifted the equilibrium toward the dissociated form, which presumably exposed the cyclic GMP regulatory site on the enzyme molecule.  相似文献   

15.
In dispersed acini from guinea-pig pancrease several pancreatic secretagogues increased calcium outflux, cyclic GMP and amylase secretion, whereas nitroprusside and hydroxylamide increased cyclic GMP but did not increase calcium outflux or amylase secretion and did not alter the action of secretagogues on calcium outflux or amylase secretion. Secretin and vasoactive intestinal peptide increased cyclic AMP and increased secretion but did not alter cyclic GMP. Nitroprusside and hydroxylamine did not alter cyclic AMP or the action of secretin or vasoactive intestinal peptide on cyclic AMP and enzyme secretion. Agents that increased cyclic GMP also caused release of the nucleotide into the extracellular medium; however, this release did not correlate with secretion of amylase into the extracellular medium. 8-Bromo cyclic AMP as well as 8-bromo cyclic GMP increased enzyme secretion and potentiated the increase in enzyme secretion caused by cholecystokinin or carbachol. The increase in amylase secretion caused by vasoactive intestinal peptide or secretin plus either of the cyclic nucleotide derivatives was the same as that caused by the peptide alone. These results indicate that cyclic GMP does not mediate the action of secretagogues on pancreatic enzyme secretion, that the release of cyclic GMP into the extracellular medium does not occur by exocytosis and that the increase in enzyme secretion caused by 8-bromo cyclic GMP results from its stability to mimic the action of endogenous cyclic AMP.  相似文献   

16.
The effect of low concentrations of cyclic GMP (guanosine 3':5'-cyclic monophosphate) on the in vitro enzymatic activities of DNA-dependent RNA polymerases isolated from human peripheral blood lymphocytes has been investigated. In agreement with earlier studies which employed isolated nuclei as the enzyme source, an increase in the activity of partially purified RNA polymerase I is observed in the presence of cyclic GMP (10(-8) to 10(-10)M). RNA polymerase II activity is inhibited by the presence of cyclic GMP at concentrations between 10(-4) and 10(-10)M. RNA polymerase III activity is stimulated in a bimodal fashion by the presence of cyclic GMP with maximal activity noted at 10(-8) to 10(-10) M and 10(-5)M. In addition, [3H]cyclic GMP binds specifically to chromatographic fractions which are known to contain RNA polymerases I, II and III. This binding to RNA polymerases II and III is apprarently less tenacious as demonstrated by dissociation studies. The observations provide additional evidence for a role for cyclic GMP in the regulation of RNA synthesis.  相似文献   

17.
Adenosine 3′,5′-monophosphate (cyclic AMP) and guanosine 3′,5′-monophosphate (cyclic GMP) metabolism in rat renal cortex was examined. Athough the cyclic AMP and cyclic GMP phosphodiesterases are similarly distributed between the soluble and particulate fractions following differential centrifugation, their susceptibility to inhibition by theophylline, dl-4-(3-butoxy-4-methoxybenzyl)-2-imidazolidinone (Ro 20-1724), and 1-methyl-3-isobutylxanthine (MIX) are quite different. Ro 20-1724 selectively inhibited both renal cortical-soluble and particulate cyclic AMP degradation, but had little effect on cyclic GMP hydrolysis. Theophylline and MIX effectively inhibited degradation of both cyclic nucleotides, with MIX the more potent inhibitor. Effects of these agents on the cyclic AMP and cyclic GMP content of cortical slices corresponded to their relative potency in broken cell preparations. Thus, in cortical slices, Ro 20-1724 (2 mm) had the least effect on basal (without agonist), carbamylcholine, and NaN3-stimulated cyclic GMP accumulation, but markedly increased basal and (parathyroid hormone) PTH-mediated cyclic AMP accumulation, MIX (2 mm) which was as effective as Ro 20-1724 in potentiating basal and PTH-stimulated increases in cyclic AMP also mediated the greatest augmentation of basal, carbamylcholine, and NaN3-stimulated accumulation of cyclic GMP. By contrast, theophylline (10 mm) which was only 12% as effective as Ro 20-1724 in increasing the total slice cyclic AMP content in the presence of PTH was much more effective than Ro 20-1724 in potentiating carbamylcholine and NaN3-mediated increases in cyclic GMP. These results demonstrate selective inhibition of cyclic nucleotide phosphodiesterase activities in the rat renal cortex and support the possibility of multiple cyclic nucleotide phosphodiesterases in this tissue. Furthermore, both cyclic nucleotides appear to be rapidly degraded in the renal cortex.  相似文献   

18.
The hypothesis that effects of insulin are mediated by an increase in cyclic GMP was examined in “intact” and “cut” hemidiaphragm preparations. After preincubation for 30 min, the diaphragms were exposed to insulin (10 mU/ml) for periods of time varying from 2 to 10 min. Then the tissue content of cyclic GMP was measured by radioimmunoassay. Tissue cyclic GMP levels were not altered by the addition of insulin, although the incorporation of d-[U-14C]glucose into glycogen was strongly stimulated under the same conditions. When cyclic GMP and dibutyryl cyclic GMP in concentrations covering a wide range were added to the medium, the insulin-like effect on glycogen synthesis could not be reproduced. On the other hand, the high concentration of dibutyryl cyclic AMP in the medium failed to suppress the insulin effect on transmembrane transport of l-arabinose under conditions in which the entrance of this nucleotide into a cell was confirmed by a significant reduction in glycogenesis. Our results suggest that the effects of insulin on striated muscle may be unrelated to either cyclic GMP or cyclic AMP.  相似文献   

19.
The complete amino acid sequence of the cyclic GMP stimulated cyclic nucleotide phosphodiesterase (cGS-PDE) of bovine heart has been determined by analysis of five digests of the protein; placement of the C-terminal 330 residues has been confirmed by interpretation of the corresponding partial cDNA clone. The holoenzyme is a homodimer of two identical N alpha-acetylated polypeptide chains of 921 residues, each with a calculated molecular weight of 103,244. The C-terminal region, residues 613-871, of the cGS-PDE comprises a catalytic domain that is conserved in all phosphodiesterase sequences except those of PDE 1 from Saccharomyces cerevisiae and a secreted PDE from Dictyostelium. A second conserved region, residues 209-567, is homologous to corresponding regions of the alpha and alpha' subunits of the photoreceptor phosphodiesterases. This conserved domain specifically binds cGMP and is involved in the allosteric regulation of the cGS-PDE. This regulatory domain contains two tandem, internal repeats, suggesting that it evolved from an ancestral gene duplication. Common cyclic nucleotide binding properties and a distant structural relationship provide evidence that the catalytic and regulatory domains within the cGS- and photoreceptor PDEs are also related by an ancient internal gene duplication.  相似文献   

20.
In the presence of 10 micrometer Ca2+ and 5 mM Mg2+ (or 0.25 mM Mg2+), the addition of 100 micrometer Zn2+, Ni2+, Co2+, Fe2+, Cu2+ or 1 mM Mn2+ resulted in varying degrees of stimulation or inhibition of 10(-6) M cyclic GMP and cyclic AMP hydrolysis by the activator-dependent cyclic nucleotide phosphodiesterase from bovine heart in the absence or presence of phosphodiesterase activator. The substrate specificity of the enzyme was altered under several conditions. The addition of Zn2+ in the presence of 5 mM Mg2+ and the absence of activator resulted in the stimulation of cyclic GMP hydrolysis over a narrow substrate range while reducing the V 65% due to a shift in the kinetics from non-linear with Mg2+ alone to linear in the presence of Zn2+ and Mg2+. Zn2+ inhibited the hydrolysis of cyclic GMP and cyclic AMP in the presence of activator with Ki values of 70 and 100 micrometer, respectively. Zn2+ inhibition was non-competitive with substrate, activator and Ca2+ but was competitive with Mg2+. In the presence of 10 micrometer Ca2+ and activator, a Ki of 15 micrometer for Zn2+ vs. Mg2+ was noted in the hydrolysis of 10(-6) M cyclic GMP. Several effects of Zn2+ are discussed which have been noted in other studies and might be due in part to changes in cyclic nucleotide levels following phosphodiesterase inhibition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号