首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
2,5-Diketo-d-gluconate (2,5DKG) is a compound that can be the intermediate for d-tartrate and also vitamin C production. Although Gluconobacter oxydans NBRC3293 produces 2,5DKG from d-glucose via d-gluconate and 2-keto-d-gluconate (2KG), with accumulation of the product in the culture medium, the efficiency of 2,5DKG production is unsatisfactory because there is a large amount of residual d-gluconate at the end of the biotransformation process. Oxidation of 2KG to 2,5DKG is catalyzed by a membrane-bound flavoprotein-cytochrome c complex: 2-keto-gluconate dehydrogenase (2KGDH). Here, we studied the kgdSLC genes encoding 2KGDH in G. oxydans NBRC3293 to improve 2,5DKG production by Gluconobacter spp. The kgdS, kgdL, and kgdC genes correspond to the small, large, and cytochrome subunits of 2KGDH, respectively. The kgdSLC genes were cloned into a broad-host-range vector carrying a DNA fragment of the putative promoter region of the membrane-bound alcohol dehydrogenase gene of G. oxydans for expression in Gluconobacter spp. According to our results, 2KGDH that was purified from the recombinant Gluconobacter cells showed characteristics nearly the same as those reported previously. We also expressed the kgdSLC genes in a mutant strain of Gluconobacter japonicus NBRC3271 (formerly Gluconobacter dioxyacetonicus IFO3271) engineered to produce 2KG efficiently from a mixture of d-glucose and d-gluconate. This mutant strain consumed almost all of the starting materials (d-glucose and d-gluconate) to produce 2,5DKG quantitatively as a seemingly unique metabolite. To our knowledge, this is the first report of a Gluconobacter strain that produces 2,5DKG efficiently and homogeneously.  相似文献   

2.
An open reading frame located in the bisC-cspA intergenic region, or at 80.1 min on the Escherichia coli chromosome, encodes a hypothetical 2-hydroxyacid dehydrogenase, which was identified as a result of the E. coli Genome Sequencing Project. We report here that the product of the gene (yiaE) is a 2-ketoaldonate reductase (2KR). The gene was cloned and expressed with a C-terminal His tag in E. coli, and the protein was purified by metal-chelate affinity chromatography. The determination of the NH2-terminal amino acid sequence of the protein defined the translational start site of this gene. The enzyme was found to be a 2KR catalyzing the reduction of 2,5-diketo-d-gluconate to 5-keto-d-gluconate, 2-keto-d-gluconate (2KDG) to d-gluconate, 2-keto-l-gulonate to l-idonate. The reductase was optimally active at pH 7.5, with NADPH as a preferred electron donor. The deduced amino acid sequence showed 69.4% identity with that of 2KR from Erwinia herbicola. Disruption of this gene on the chromosome resulted in the loss of 2KR activity in E. coli. E. coli W3110 was found to grow on 2KDG, whereas the mutant deficient in 2KR activity was unable to grow on 2KDG as the carbon source, suggesting that 2KR is responsible for the catabolism of 2KDG in E. coli and the diminishment of produced 2KDG from d-gluconate in the cultivation of E. coli harboring a cloned gluconate dehydrogenase gene.

We previously reported the cloning and expression of a gene cluster encoding three subunits of membrane-bound gluconate dehydrogenase (GADH) from Erwinia cypripedii in Escherichia coli (26). In the course of further study on the conversion of d-gluconate to 2-keto-d-gluconate (2KDG) with a recombinant E. coli strain, we observed that the level of 2KDG produced in the medium gradually decreased after the exhaustion of d-gluconate in the medium (see Fig. Fig.1).1). In an effort to find the reason, the NADPH-dependent reductase activity catalyzing the conversion of 2KDG to d-gluconate was detected in extracts of E. coli cells. This result suggested the existence of enzymes involved in ketogluconate metabolism in E. coli, as reported for several species of the genera Corynebacterium, Brevibacterium, Erwinia, Acetobacter, Gluconobacter, Serratia, and Pseudomonas (20, 23, 25). In Erwinia, Acetobacter, Gluconobacter, Serratia, and Pseudomonas, oxidation of glucose to ketogluconates such as 2KDG, 5-keto-d-gluconate (5KDG), and 2,5-diketo-d-gluconate (25DKG) has been shown to proceed via membrane-bound dehydrogenases, which are linked to the electron transport chain (2, 21). The ketogluconates or their phosphorylated forms are unique substrates in that they enter into central metabolism only after they are reduced by NADPH-dependent reductases (20, 23). NADPH-dependent 2-ketoaldonate reductase (2KR), which catalyzes the reduction of 2KDG to d-gluconate, 25DKG to 5KDG, and 2-keto-l-gulonate (2KLG) to l-idonate (IA), has been purified and characterized from Brevibacterium ketosoreductum (25) and Erwinia herbicola (23). Even if the substrate specificity has not been examined with 25DKG as a substrate, 2KDG reductases from acetic acid bacteria also catalyze the reduction of 2KLG to IA as well as of 2KDG to d-gluconate (1).Open in a separate windowFIG. 1Time course of bioconversion of d-gluconate to 2KDG by E. coli harboring the cloned GADH gene. E. coli W3110(pGA313) was grown in a 2-liter fermentor at 37°C with aeration at 1 vvm and agitation at 500 rpm.Until now, no ketoaldonate reductase has been reported for E. coli. We report here that the product of the yiaE gene, located in the bisC-cspA intergenic region at 80.1 min on the E. coli chromosome, is a 2KR; in addition, the diminishment of produced 2KDG from d-gluconate in the cultivation of recombinant E. coli harboring a cloned membrane-bound GADH gene is due to 2KR as the cytosolic enzyme responsible for conversion of 2KDG to d-gluconate. We found also that E. coli W3110 grows on 2KDG as the sole carbon source.  相似文献   

3.
The aim of our work is to show the importance of the role of hydrophobic bonds in maintaining Mg2+-ATPase or sucrase activity and Na+-coupled d-glucose uptake normal for the brush border of rat enterocytes. The activity of the two enzymes and the d-glucose uptake were therefore measured under the action of n-aliphatic alcohols and related to the fluidity determined by ESR. Three concentrations were used for the first eight alcohols, those of octanol being about 1500-times lower than those of methanol. For each alcohol the d-glucose uptake and the fluidity were linear functions of the logarithm of the concentration, the linear regressions being practically parallel and equidistant. The concentrations (C) of the eight alcohols inhibiting the d-glucose uptake by 80% were similar to those increasing the membrane fluidity by 3%. The linear relationship which existed in both cases between log 1 / C and log P, P being octanol / water partition coefficients of the alcohols, was evidence of great sensitivity to the hydrophobic effect of the alcohols. Only the first alcohols, however, produced any notable inhibition of Mg2+-ATPase and sucrase. Hydrophobic bonds are thus shown to have little influence in maintaining the activity of Mg2+-ATPase and sucrase, but they modulate the Na+-coupled d-glucose uptake.  相似文献   

4.
A gene for 2,5-diketo-d-gluconate (25DKG) reductase, which encodes an enzyme composed of 277 amino acid residues catalyzing the reduction of 25DKG to 2-keto-l-gulonate (2KLG), was cloned from Corynebacterium sp. strain SHS752001 and expressed in Erwinia citreus SHS2003, a strain which oxidizes glucose to 25DKG. The recombinant microorganism converted glucose to 2KLG, a compound which can be readily converted to l-ascorbate (vitamin C). Improvements in the yield of 2KLG were obtained by changing fermentation conditions, using the p(l) promoter of bacteriophage lambda to express the reductase, and selecting a mutant of E. citreus which could use neither 25DKG nor 2KLG as a sole carbon source for growth. When a culture of the recombinant strain was fed with glucose to a total of 40 g/liter, 49.4% of the glucose was converted to 2KLG during a 72-h fermentation.  相似文献   

5.
An anaerobic phthalate isomer-degrading strain (JTT) that we previously isolated was characterized. In addition, a strictly anaerobic, mesophilic, syntrophic phthalate isomer-degrading bacterium, designated strain JIT, was isolated and characterized in this study. Both were non-motile rods that formed spores. In both strains, the optimal growth was observed at temperatures around 37°C and neutral pH. In syntrophic co-culture with the hydrogenotrophic methanogen Methanospirillum hungatei, both strains could utilize two or three phthalate isomers for growth, and produce acetate and methane as end products. Strain JTT was able to grow on isophthalate, terephthalate, and a number of low-molecular weight aromatic compounds, such as benzoate, hydroquinone, 2-hydroxybenzoate, 3-hydroxybenzoate, 2,5-dihydroxybenzoate, 3-phenylpropionate in co-culture with M. hungatei. It could also grow on crotonate, hydroquinone and 2,5-dihydroxybenzoate in pure culture. Strain JIT utilized all of the three phthalate isomers as well as benzoate and 3-hydroxybenzoate for growth in co-culture with M. hungatei. No substrates were, however, found to support the axenic growth of strain JIT. Neither strain JTT nor strain JIT could utilize sulfate, sulfite, thiosulfate, nitrate, fumarate, Fe (III) or 4-hydroxybenzoate as electron acceptor. Phylogenetically, strains JTT and JIT were relatively close to the members of the genera Pelotomaculum and Cryptanaerobacter in ‘Desulfotomaculum lineage I’. Physiological and chemotaxonomic characteristics indicated that the two isolates should be classified into the genus Pelotomaculum, creating two novel species for them. Here, we propose Pelotomaculum terephthalicum sp. nov. and Pelotomaculum isophthalicum sp. nov. for strain JTT and strain JIT, respectively. The type strains are strains JTT (= DSM 16121T = JCM 11824T = NBRC 100523T) and JIT (= JCM 12282T = BAA-1053T) for P. terephthalicum and P. isophthalicum, respectively.Nucleotide sequence accession number: The GenBank/EMBL/DDBJ accession numbers of the 16S rRNA gene sequences of strains JTT and JIT are AB091323 and AB232785, respectively  相似文献   

6.
The thermoacidophilic archaeonThermoplasma acidophilum has long been known to utilized-glucosevia the non-phosphorylated Entner-Doudoroff (nED) pathway. We now report the identification of a gene encoding 2-keto-3-deoxy-d-gluconate (KDG) kinase. The discovery of this gene implies the presence of a glycolysis pathway, other than the nED pathway. It was found that Ta0122 in theT. acidophilum genome corresponded to KDG kinase. This enzyme shares no similarity with known KDG kinases, and belongs to a novel class of sugar kinases. Of the five sugars tested only KDG was utilized as a substrate.  相似文献   

7.
A practical method for the production of calcium 2-keto-l-gulonate (an intermediate in the Reichstein synthesis of l-ascorbic acid) from d-glucose has been established by using a two-stage fermentation system. d-Glucose was first converted to calcium 2,5-diketo-d-gluconate by a mutant strain of Erwinia sp. in a medium containing d-glucose, corn steep liquor, (NH(4))(2)HPO(4), and CaCO(3). After a 26-h cultivation, 328.6 mg of calcium 2,5-diketo-d-gluconate per ml was obtained, with a 94.5% yield from d-glucose. This broth was used directly for the next conversion without removal of cells by treatment with sodium dodecyl sulfate. The stereospecific reduction of calcium 2,5-diketo-d-gluconate to calcium 2-keto-l-gulonate was performed with a mutant strain of Corynebacterium sp. When the cell growth reached a maximum (about 16 h) in a medium containing d-glucose, corn steep liquor, NaNO(3), KH(2)PO(4), and trace elements, NaNO(3) was added to the culture, and then the calcium 2,5-diketo-d-gluconate broth was fed over a period of about 50 h. Since the mutant strain requires a hydrogen donor for reduction, the calcium 2,5-diketo-d-gluconate broth was mixed with d-glucose before being fed. The results of four two-stage fermentations in 10-m conventional fermentors showed that an average of 106.3 mg of calcium 2-keto-l-gulonate per ml was obtained, with a 84.6% yield from d-glucose, the starting material of calcium 2,5-diketo-d-gluconate production. Calcium 2-keto-l-gulonate was stable in the broth. Neither 2-keto-d-gluconic acid nor 5-keto-d-gluconic acid was detected in the final broth.  相似文献   

8.
From long-term chemostat experiments, variants ofPseudomonas aeruginosa JB2 were obtained which exhibited altered properties with respect to the metabolism of 2,5-dichlorobenzoic acid (2,5-DBA). Thus, unlike the original strain JB2-WT, strain JB2-var1 is able to grow in continuous culture on 2,5-DBA as the sole limiting carbon and energy source. Yet, at a dilution rate of 0.07 h–1 and a dissolved oxygen concentration of 12 µM, even with this strain no steady states with 2,5-DBA alone could be established in continuous cultures. Yet another strain was obtained after prolonged continuous growth of JB2-var1 in the chemostat. It has improved 2,5-DBA degrading capabilities which become apparent only during growth in continuous culture: a lower apparent K m for 2,5-DBA and lowered steady-state residual concentrations of 2,5 DBA. Although with this strain steady states were obtained at oxygen concentrations as low as 11 µM, at further lowered concentrations this was no longer possible. In C-limited continuous cultures of JB2-var1 or JB2-var2, addition of benzoic acid (BA) to the feed reduced the amounts of 2,5-DBA degraded, which was most apparent at low oxygen concentrations (< 30 µM). At higher dissolved oxygen concentrations the addition of BA resulted in increasing cell-densities but did not affect the residual steady state concentration of 2,5-DBA. Indeed, whole cell suspensions from chemostat cultures grown on BA plus 2,5-DBA did show a lower apparent affinity for 2,5-DBA than those from cultures grown on 2,5-DBA alone. These results indicate that in environments with low oxygen concentrations and alternative, more easily degradable, substrates the degradation rates of chloroaromatic compounds by aerobic organisms may be negatively affected.Abbreviations BA benzoic acid - 2,5-DBA 2,5-dichlorobenzoic acid - QO 2 max maximum specific respiration rate  相似文献   

9.
Clostridum acetobutylicum strain P262 fermented glucose, pyruvate, or lactate, and the butyrate production was substrate-dependent. Differences in butyrate yield could not be explained by changes in butyrate kinase activities, but the butyrate production was inversely related to acetate kinase activity. The acetate kinase had a pH optimum of 8.0, aK m for acetate of 160 mM, and ak cat of 16,800 min-1. The enyzme had a native molecular mass of 78 kDa; the size of 42 kDa on SDS-PAGE indicated that the acetate kinase of strain P262 was a homodimer.Abbreviations Acetyl-P Acetyl-phosphate - MTT 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide  相似文献   

10.
The transesterification of 1 M divinyladipate with 0.25 M glucose in dimethylformamide (DMF) catalyzed by 5 mg ml–1 alkaline protease (24 units mg–1 min–1) from Streptomyces sp. gave 6-O-vinyladipoyl d-glucose as the main product with yields are between 60 and 90%. The optimum temperature for the reaction was about 50 °C.  相似文献   

11.
Desulfomonile tiedjei is the key dechlorinating organism in a three-tiered bacterial consortium that grows on the methanogenic degradation of 3-chlorobenzoate. 2,5-Dichlorobenzoate, however, is only converted to 2-chlorobenzoate and is not a methanogenic substrate for the consortium. The dechlorinator uses hydrogen produced from benzoate by the benzoate degrading member of consortium as its source of reducing equivalents for the dechlorination reaction. Incubation of 3-chlorobenzoate grown consortium cells with 2,5-dichlorobenzoate resulted in the consumption of acetate concurrent with the formation of 2-chlorobenzoate indicating that acetate can serve as an alternative source of reducing equivalents for reductive dechlorination. This interpretation was confirmed by the finding that the formation of 14CO2 from 2-14C-labeled acetate was stoichiometric. The addition of hydrogen to 2,5-dichlorobenzoate metabolizing cells resulted in (i) an 2.7-fold increase in the rate of dechlorination, and (ii) a drop in the amount of label recovered as CO2+CH4 from methyl 14C-labeled acetate, indicating that hydrogen was the preferred source of reducing equivalents for reductive dechlorination. Benzoate, an indirect source of H2 in the consortium, also inhibited the oxidation of acetate, while glucose, methanol, and butyrate did not affect labeled gas production and therefore were not suitable electron donors. Concomittant to dechlorination of 2,5-dichlorobenzoate 3- and 4-methoxybenzoate were converted to 3- and 4-hydroxybenzoate respectively. These conversions stimulated the rate of dechlorination 2-fold. Demethylation of 4-methoxybenzoate stimulated, but demethylation of 3-methoxybenzoate inhibited the oxidation of benzoate during the dechlorination of 2,5-dichlorobenzoate, suggesting that these isomers are metabolized through different pathways. Experiments with benzoate, 3-chlorobenzoate and 2,5-dichlorobenzoate metabolizing cells amended with 14CO2 showed that actively dechlorinating cells catalyzed an exchange reaction between CO2 and acetate.  相似文献   

12.
Botrytis cinerea is a model plant‐pathogenic fungus that causes grey mould and rot diseases in a wide range of agriculturally important crops. A previous study has identified two enzymes and corresponding genes (bcdh, bcer) that are involved in the biochemical transformation of uridine diphosphate (UDP)‐glucose, the major fungal wall nucleotide sugar precursor, to UDP‐rhamnose. We report here that deletion of bcdh, the first biosynthetic gene in the metabolic pathway, or of bcer, the second gene in the pathway, abolishes the production of rhamnose‐containing glycans in these mutant strains. Deletion of bcdh or double deletion of both bcdh and bcer has no apparent effect on fungal development or pathogenicity. Interestingly, deletion of the bcer gene alone adversely affects fungal development, giving rise to altered hyphal growth and morphology, as well as reduced sporulation, sclerotia production and virulence. Treatments with wall stressors suggest the alteration of cell wall integrity. Analysis of nucleotide sugars reveals the accumulation of the UDP‐rhamnose pathway intermediate UDP‐4‐keto‐6‐deoxy‐glucose (UDP‐KDG) in hyphae of the Δbcer strain. UDP‐KDG could not be detected in hyphae of the wild‐type strain, indicating fast conversion to UDP‐rhamnose by the BcEr enzyme. The correlation between high UDP‐KDG and modified cell wall and developmental defects raises the possibility that high levels of UDP‐KDG result in deleterious effects on cell wall composition, and hence on virulence. This is the first report demonstrating that the accumulation of a minor nucleotide sugar intermediate has such a profound and adverse effect on a fungus. The ability to identify molecules that inhibit Er (also known as NRS/ER) enzymes or mimic UDP‐KDG may lead to the development of new antifungal drugs.  相似文献   

13.
Cronobacter turicensis, previously known as Enterobacter sakazakii, is a Gram-negative opportunistic food-borne pathogen that has been reported as a cause of life-threatening neonatal infections. From chemical and physical analyses involving composition analysis, methylation, two-dimensional high-resolution nuclear magnetic resonance, and mass spectrometry methods, the antigenic O-polysaccharide in the smooth-type lipopolysaccharide of C. turicensis (strain HPB 3287) was determined to be a high molecular mass polymer of a repeating pentasaccharide unit composed of d-galactose, d-glucose, 2-acetamido-2-deoxy-d-galactose, and 5,7-diacetamido-3,5,7,9-tetradeoxy-d-glycero-d-galacto-non-2-ulosonic acid (legionaminic acid), in a molar ratio 2:1:1:1, and having the structure:  相似文献   

14.
A bacterium, strain DP-45, capable of degrading 2,5-dimethylpyrazine (2,5-DMP) was isolated and identified as Rhodococcus erythropolis. The strain also grew on many other pyrazines found in the waste gases of food industries, like 2,3-dimethylpyrazine (2,3-DMP), 2,6-dimethylpyrazine (2,6-DMP), 2-ethyl-5(6)-dimethylpyrazine (EMP), 2-ethylpyrazine (EP), 2-methylpyrazine (MP), and 2,3,5-trimethylpyrazine (TMP). The strain utilized 2,5-DMP as sole source of carbon and nitrogen and grew optimally at 25°C with a doubling time of 7.6 h. The degradation of 2,5-DMP was accompanied by the growth of the strain and by the accumulation of a first intermediate, identified as 2-hydroxy-3,6-dimethylpyrazine (HDMP). The disappearance of HDMP was accompanied by the release of ammonium into the medium. No other metabolite was detected. The degradation of 2,5-DMP and HDMP by strain DP-45 required molecular oxygen. The expression of the first enzyme in the pathway was induced by 2,5-DMP and HDMP whereas the second enzyme was constitutively expressed. The activity of the first enzyme was inhibited by diphenyliodonium (DPI), a flavoprotein inhibitor, methimazole, a competitive inhibitor of flavin-containing monooxygenases, and by cytochrome P450 inhibitors, 1-aminobenzotriazole (ABT) and phenylhydrazine (PHZ). The activity of the second enzyme was inhibited by DPI, ABT, and PHZ. Sodium tungstate, a specific antagonist of molybdate, had no influence on growth and consumption of 2,5-DMP by strain DP-45. These results led us to propose that a flavin-dependent monooxygenase or a cytochrome P450-dependent monooxygenase rather than a molybdenum hydroxylase catalyzed the initial hydroxylation step and that a cytochrome P450 enzyme is responsible for the transformation of HDMP in the second step.  相似文献   

15.
16.
C. Vincent  G. Bélair 《BioControl》1992,37(4):575-582
Four types of experiments were conducted to assess the pathogenicity of entomogenous nematodes against the apple sawfly,Hoplocampa testudinea Klug (Hymenoptera: Tenthredinidae). In Petri dish,Steinernema carpocapsae (Weiser) DD 136 strain,S. carpocapsae All strain,S. feltiae (Filipjev) andHeterorhabditis bacteriophora Poinar caused 100% larval mortality 72 h after the treatments. In semi-field conditions under dwarf apple trees, a single treatment with either 40 or 80S. carpocapsae All strain/cm2 caused significant (>80%) larval mortality. No significant increase in mortality was obtained with a second application. In 1990, late treatment with 80S. carpocapsae All strain/cm2 caused significant (39.1%) pupal mortality. In 50×50 cm quadrats under dwarf apple trees, treatment with 40 and 80S. carpocapsae All strain/cm2 were done in spring 1989. In spring 1990, respectively 22 and 25 apple sawfly adults emerged from quadrats treated with 40 and 80S. carpocapsae All strain/cm2, whereas 78 adults emerged from untreated quadrats. In a foliar application experiment, a single treatment withS. carpocapsae All strain significantly reduced the percent of fruit showing secondary damage. The possibility of using entomogenous nematodes as part of an integrated pest management in apple orchards is discussed, with particular reference to the integration of programs aimed at managing plum curculio,Conotrachelus nenuphar (Herbst) (Coleoptera: Curculionidae) populations.   相似文献   

17.
Agrobacterium tumefaciens is a Gram‐negative bacterium and causative agent of Crown Gall disease that infects a variety of economically important plants. The annotated A. tumefaciens genome contains 10 putative dapA genes, which code for dihydrodipicolinate synthase (DHDPS). However, we have recently demonstrated that only one of these genes (dapA7) encodes a functional DHDPS. The function of the other nine putative dapA genes is yet to be determined. Here, we demonstrate using bioinformatics that the product of the dapA5 gene (DapA5) possesses all the catalytic residues canonical to 2‐keto‐3‐deoxygluconate (KDG) aldolase, which is a class I aldolase involved in glucose metabolism. We therefore expressed, purified, and characterized recombinant DapA5 using mass spectrometry, circular dichroism spectroscopy, analytical ultracentrifugation, and enzyme kinetics. The results show that DapA5 (1) adopts an α/β structure consistent with the TIM‐barrel fold of KDG aldolases, (2) possesses KDG aldolase enzyme activity, and (3) exists as a tight dimer in solution. This study shows for the first time that dapA5 from A. tumefaciens encodes a functional dimeric KDG aldolase.  相似文献   

18.
A water-soluble polysaccharide of an edible mushroom Calocybe indica var. APK2 showed immunoenhancing (macrophage, splenocyte, thymocyte, and bone marrow activation) and cytotoxic activity toward HeLa cell lines and found to consist of d-glucose, d-galactose, and l-fucose in a molar ratio of nearly 3:1:1. On the basis of acid hydrolysis, methylation analysis, and NMR studies (1H, 13C, DEPT-135, TOCSY, DQF–COSY, NOESY, ROESY, HMQC, and HMBC), the structure of the repeating unit of the fuco-galacto-glucan was established as:  相似文献   

19.
The kinetic parameters of net exit of d-glucose from human red blood cells have been measured after the cells were loaded to 18 mM, 75 mM and 120 mM at 2°C and 75 mM and 120 mM at 20°C. Reducing the temperature, or raising the loading concentration raises the apparent Km for net exit. Deoxygenation also reduces the Km for d-glucose exit from red blood cells loaded initially to 120 mM at 20°C from 32.9 ± 2.3 mM (13) with oxygenated blood to 20.5 ± 1.3 mM (17) (P<0.01). Deoxygenation increases the ratio Vmax/Km from 5.29 ± 0.26 min−1 (13) for oxygenated blood to 7.13 ± 0.29 min−1 (17) for deoxygenated blood (P < 0.001). The counterflow of d-glucose from solutions containing 1 mM 14C-labelled d-glucose was measured at 2°C and 20°C. Reduction in temperature, reduced the maximal level to which labelled d-glucose was accumulated and altered the course of equilibration of the specific activity of intracellular d-glucose from a single exponential to a more complex form. Raising the internal concentration from 18 mM to 90 mM at 2°C also alters the course of equilibration of labelled d-glucose within the cell to a complex form. The apparent asymmetry of the transport system may be estimated from the intracellular concentrations of labelled and unlabelled sugar at the turning point of the counterflow transient. The estimates of asymmetry obtained from this approach indicate that there is no significant asymmetry at 20°C and at 2°C asymmetry is between 3 and 6. This is at least 20-fold less than predicted from the kinetic parameter asymmetries for net exit and entry. None of the above results fit a kinetic scheme in which the asymmetry of the transport system is controlled by intrinsic differences in the kinetic parameters at the inner and outer membrane surface. These results are consistent with a model for sugar transport in which movement between sugar within bound and free intracellular compartments can become the rate-limiting step in controlling net movement into, or out of the cell.  相似文献   

20.
【目的】潮间带海水中分离获得一株具有水解多糖能力的菌株FZY0027,分析其对不同多糖的水解能力和基因组特征。【方法】通过形态观察、16S rRNA基因测序和基于Illumina NovaSeq和OxfordNanopore PromethION测序技术全基因组测序对菌株FZY0027进行鉴定。使用dbCAN、EasyCGTree、BRIG和Easyfig等生物信息学软件将菌株FZY0027和降解糖噬糖菌(Saccharophagus degradans) 2-40T进行比较。使用3,5-二硝基水杨酸(3,5-dinitrosalicylic acid, DNS)法测定多糖水解活性。【结果】菌株FZY0027与S. degradans 2-40T的16S rRNA基因序列相似度达到99.9%,初步鉴定为降解糖噬糖菌(S. degradans) FZY0027。该菌株在水解淀粉、木聚糖和甘露聚糖时产生的还原糖浓度最高,分别为2.28、1.75和1.10 mg/mL。菌株FZY0027基因组全长5 178 381 bp,共编码4 156个基因,G+C含量为45.8%。菌株FZY0027与S. degradans 2-40T的平均核苷酸一致性(average nucleotide identity, ANI)、平均氨基酸一致性(average amino acid identity, AAI)和DNA-DNA分子杂交(digital DNA-DNA hybridization, dDDH)值分别为96.5%、96.7%和70.0%。经碳水化合物活性酶数据库注释获得303个基因,其中,菌株FZY0027和S. degradans 2-40T分别有糖苷水解酶(glycoside hydrolases, GHs)结构域的基因137个和130个。菌株FZY0027具有多个参与淀粉、木聚糖等多糖水解的基因,这与菌株FZY0027对淀粉和木聚糖的水解能力强的结果一致。然而,与S. degradans 2-40T相比,菌株FZY0027在实验条件下只能水解少数多糖,这可能需要特定的诱导条件才能充分发挥其多糖水解能力。【结论】菌株FZY0027是一株多能型多糖水解菌,具有潜在开发价值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号