首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
In the current study, we investigated the role of receptor phosphorylation and beta-arrestins in delta-opioid receptor (DOR) signaling and trafficking by using a DOR mutant in which all Ser/Thr residues in the C terminus were mutated to Ala (DTS). We demonstrated that the DOR agonist D-[Pen(2),Pen(5)]enkephalin could induce receptor internalization and adenylyl cyclase (AC) desensitization of DTS, but with comparatively slower kinetics than those observed with wild type DOR. Blockade of the internalization of DTS by the dominant-negative mutant dynamin, dynamin K44E, did not affect AC desensitization. However, depletion of beta-arrestins almost totally blocked both internalization and AC desensitization of DTS. A BRET assay suggested that DOR phosphorylation promotes receptor selectivity for beta-arrestin 2 over beta-arrestin 1. Furthermore, in mouse embryonic fibroblast (MEF) cells lacking either beta-arrestin 1 (beta arr1(-/-)) or beta-arrestin 2 (beta arr2(-/-)), agonist-induced DTS desensitization and internalization were similar to that observed in wild type MEFs. In contrast, although DOR internalization decreased in both beta arr1(-/-) MEFs and beta arr2(-/-) MEFs, DPDPE-induced DOR desensitization was significantly reduced in beta arr2(-/-) MEFs, but not in beta arr1(-/-) MEFs. Additionally, the BRET assay suggested that depletion of phosphorylation did not influence the stability of the receptor-beta-arrestin complex. Consistent with this observation, DTS did not recycle after internalization, which is like wild type DOR. Taken together, these results indicate that receptor phosphorylation confers DOR selectivity for beta-arrestin 2 without affecting the stability of the receptor-beta-arrestin complex and the fate of the internalized receptor.  相似文献   

2.
Arrestins are important proteins, which regulate the function of serpentine heptahelical receptors and contribute to multiple signaling pathways downstream of receptors. The ubiquitous beta-arrestins are believed to function exclusively as monomers, although self-association is assumed to control the activity of visual arrestin in the retina, where this isoform is particularly abundant. Here the oligomerization status of beta-arrestins was investigated using different approaches, including co-immunoprecipitation of epitope-tagged beta-arrestins and resonance energy transfer (BRET and FRET) in living cells. At steady state and at physiological concentrations, beta-arrestins constitutively form both homo- and hetero-oligomers. Co-expression of beta-arrestin2 and beta-arrestin1 prevented beta-arrestin1 accumulation into the nucleus, suggesting that hetero-oligomerization may have functional consequences. Our data clearly indicate that beta-arrestins can exist as homo- and hetero-oligomers in living cells and raise the hypothesis that the oligomeric state may regulate their subcellular distribution and functions.  相似文献   

3.
The widely expressed beta-arrestin isoforms 1 and 2 bind phosphorylated G protein-coupled receptors (GPCRs) and mediate desensitization and internalization. Phosphorylation of protease-activated receptor-1 (PAR1), a GPCR for thrombin, is important for desensitization and internalization, however, the role of beta-arrestins in signaling and trafficking of PAR1 remains unknown. To assess beta-arrestin function we examined signaling and trafficking of PAR1 in mouse embryonic fibroblasts (MEFs) derived from beta-arrestin (betaarr) knockouts. Desensitization of PAR1 signaling was markedly impaired in MEFs lacking both betaarr1 and betaarr2 isoforms compared with wild-type cells. Strikingly, in cells lacking only betaarr1 PAR1 desensitization was also significantly impaired compared with betaarr2-lacking or wild-type cells. In wild-type MEFs, activated PAR1 was internalized through a dynamin- and clathrin-dependent pathway and degraded. Surprisingly, in cells lacking both betaarr1 and betaarr2 activated PAR1 was similarly internalized through a dynamin- and clathrin-dependent pathway and degraded, whereas the beta(2)-adrenergic receptor (beta(2)-AR) failed to internalize. A PAR1 cytoplasmic tail mutant defective in agonist-induced phosphorylation failed to internalize in both wild-type and beta-arrestin knockout cells. Thus, PAR1 appears to utilize a distinct phosphorylation-dependent but beta-arrestin-independent pathway for internalization through clathrin-coated pits. Together, these findings strongly suggest that the individual beta-arrestin isoforms can differentially regulate GPCR desensitization and further reveal a novel mechanism by which GPCRs can internalize through a dynamin- and clathrin-dependent pathway that is independent of arrestins.  相似文献   

4.
The ability of G-protein-coupled receptors (GPCRs) to interact to form new functional structures, either forming oligomers with themselves or forming associations with other intracellular proteins, has important implications for the regulation of cellular events; however, little is known about how this occurs. Here, we have employed a newly emerging technology, bioluminescence resonance energy transfer (BRET), used to study protein-protein interactions in living cells, to demonstrate that the thyrotropin-releasing hormone receptor (TRHR) forms constitutive homo-oligomers. This formation of TRHR homo-oligomers in the absence of ligand was shown by demonstration of an energy transfer between TRHR molecules fused to either donor, Renilla luciferase (Rluc) or acceptor, enhanced yellow fluorescent protein (EYFP) molecules. This interaction was shown to be specific, since energy transfer was not detected between co-expressed tagged TRHRs and either complementary tagged gonadotropin-releasing hormone (GnRH) or beta(2)-adrenergic receptors. Furthermore, generation of a BRET signal between the TRHRs could only be inhibited by co-expression of the wild-type TRHR and not by other GPCRs. Agonist stimulation led to a time- and dose-dependent increase in the amount of energy transfer. Inhibition of receptor internalization by co-expression of dynamin mutant K44A did not affect the interaction between TRHRs, suggesting that clustering of receptors within clathrin-coated pits is not sufficient for energy transfer to occur. BRET also provided evidence for the agonist-induced oligomerization of another GPCR, the GnRH receptor (GnRHR), and the presence of an agonist-induced interaction of the adaptor protein, beta-arrestin, with TRHR and the absence of an interaction of beta-arrestin with GnRHR. This study supports the usefulness of BRET as a powerful tool for studying GPCR aggregations and receptor/protein interactions in general and presents evidence that the functioning unit of TRHRs exists as homomeric complexes.  相似文献   

5.
The bioluminescence resonance energy transfer (BRET) technique has become extremely popular for studying protein-protein interactions in living cells and real time. Of particular interest is the ability to monitor interactions between G protein-coupled receptors, such as the thyrotropin-releasing hormone receptor (TRHR), and proteins critical for regulating their function, such as beta-arrestin. Using TRHR/beta-arrestin interactions, we have demonstrated improvements to all 3 generations of BRET (BRET(1), BRET(2), and eBRET) by using the novel forms of luciferase, Rluc2 and Rluc8, developed by the Gambhir laboratory. Furthermore, for the 1st time it was possible to use the BRET2 system to detect ligand-induced G protein-coupled receptor/beta-arrestin interactions over prolonged periods (on the scale of hours rather than seconds) with a very stable signal. As demonstrated by our Z'-factor data, these luciferases increase the sensitivity of BRET to such an extent that they substantially increase the potential applicability of this technology for effective drug discovery high-throughput screening.  相似文献   

6.
Beta-arrestins are key negative regulators and scaffolds of G protein-coupled receptor (GPCR) signalling. Beta-arrestin1 and beta-arrestin2 preferentially bind to the phosphorylated GPCRs in response to agonist stimulation, resulting in receptor internalization and desensitization. The critical roles of GPCR kinases (GRKs)-catalyzed receptor phosphorylation and interaction of beta-arrestins with the phosphorylated receptor in receptor internalization are well established. However, emerging evidence suggests that an agonist-stimulated internalization mechanism that is independent of receptor phosphorylation may also be employed in some cases, although the molecular mechanism for the phosphorylation-independent GPCR internalization is not clear. The current study investigated the role of receptor phosphorylation and the involvement of different beta-arrestin subtypes in agonist-induced delta-opioid receptor (DOR) internalization in HEK293 cells. Results from flow cytometry, fluorescence microscopy, and surface biotin labelling experiments showed that elimination of agonist-induced DOR phosphorylation by mutation GRK binding or phosphorylation sites only partially blocked agonist-induced receptor internalization, indicating the presence of an agonist-induced, GRK-independent mechanism for DOR internalization. Fluorescence and co-immunoprecipitation studies indicated that both the wild-type DOR and the phosphorylation-deficient mutant receptor could bind and recruit beta-arrestin1 and beta-arrestin2 to the plasma membrane in an agonist-stimulated manner. Furthermore, internalization of both the wild-type and phosphorylation-deficient receptors was increased by overexpression of either type of beta-arrestins and blocked by dominant-negative mutants of beta-arrestin-mediated internalization, demonstrating that both phosphorylation-dependent and -independent internalization require beta-arrestin. Moreover, double-stranded RNA-mediated interference experiments showed that either beta-arrestin1 or beta-arrestin2 subtype-specific RNAi only partially inhibited agonist-induced internalization of the wild-type DOR. However, agonist-induced internalization of the phosphorylation-deficient DOR was not affected by beta-arrestin1-specific RNAi but was blocked by RNAi against beta-arrestin2 subtype. These data indicate that endogenous beta-arrestin1 functions exclusively in the phosphorylation-dependent receptor internalization, whereas endogenous beta-arrestin2, but not beta-arrestin1, is required for the phosphorylation-independent receptor internalization. These results thus provide the first evidence of different requirement for beta-arrestin isoforms in the agonist induced phosphorylation-dependent and -independent GPCR internalization.  相似文献   

7.
The highly homologous beta-arrestin1 and -2 adaptor proteins play important roles in the function of G protein-coupled receptors. Either beta-arrestin variant can function as a molecular chaperone for clathrin-mediated receptor internalization. This role depends primarily upon two distinct, contiguous C-terminal beta-arrestin motifs recognizing clathrin and the beta-adaptin subunit of AP2. However, a molecular basis is lacking to explain the different endocytic efficacies of the two beta-arrestin isoforms and the observation that beta-arrestin N-terminal substitution mutants can act as dominant negative inhibitors of receptor endocytosis. Despite the near identity of the beta-arrestins throughout their N termini, sequence variability is present at a small number of residues and includes tyrosine to phenylalanine substitutions. Here we show that corresponding N-terminal (Y/F)VTL sequences in beta-arrestin1 and -2 differentially regulate mu-adaptin binding. Our results indicate that the beta-arrestin1 Tyr-54 lessens the interaction with mu-adaptin and moreover is a Src phosphorylation site. A gain of endocytic function is obtained with the beta-arrestin1 Y54F substitution, which improves both the beta-arrestin1 interaction with mu-adaptin and the ability to enhance beta2-adrenergic receptor internalization. These data indicate that beta-arrestin2 utilizes mu-adaptin as an endocytic partner, and that the inability of beta-arrestin1 to sustain a similar degree of interaction with mu-adaptin may result from coordination of Tyr-54 by neighboring residues or its modification by Src kinase. Additionally, these naturally occurring variations in beta-arrestins may also differentially regulate the composition of the signaling complexes organized on the receptor.  相似文献   

8.
Homologous desensitization of beta2-adrenergic and other G-protein-coupled receptors is a two-step process. After phosphorylation of agonist-occupied receptors by G-protein-coupled receptor kinases, they bind beta-arrestins, which triggers desensitization and internalization of the receptors. Because it is not known which regions of the receptor are recognized by beta-arrestins, we have investigated beta-arrestin interaction and internalization of a set of mutants of the human beta2-adrenergic receptor. Mutation of the four serine/threonine residues between residues 355 and 364 led to the loss of agonist-induced receptor-beta-arrestin2 interaction as revealed by fluorescence resonance energy transfer (FRET), translocation of beta-arrestin2 to the plasma membrane, and receptor internalization. Mutation of all seven serine/threonine residues distal to residue 381 did not affect agonist-induced receptor internalization and beta-arrestin2 translocation. A beta2-adrenergic receptor truncated distal to residue 381 interacted normally with beta-arrestin2, whereas its ability to internalize in an agonist-dependent manner was compromised. A similar impairment of internalization was observed when only the last eight residues of the C terminus were deleted. Our experiments show that the C terminus distal to residue 381 does not affect the initial interaction between receptor and beta-arrestin, but its last eight amino acids facilitate receptor internalization in concert with beta-arrestin2.  相似文献   

9.
beta-Arrestins have been implicated in regulating internalization of the parathyroid hormone receptor (PTHR), but the structural features in the receptor required for this effect are unknown. In the present study performed in HEK-293 cells, we demonstrated that different topological domains of PTHR are implicated in agonist-dependent receptor internalization; truncation of the cytoplasmic tail (PTHR-TR), selective mutations of the cytoplasmic tail to remove the sites of parathyroid hormone (PTH)-stimulated phosphorylation (PTHR-PD), and mutations in the third transmembrane helix (N289A) or in the third cytoplasmic loop (K382A) resulted in a 30-60% reduction in (125)I-PTH-related protein internalization. To better define the role of these internalization determinants, we have tested the ability of these mutant PTHRs to associate with beta-arrestins by using three different methodological approaches: 1) ability of overexpression of beta-arrestins to restore the internalization of (125)I-PTH-related protein for the mutant PTHRs; 2) visualization of PTH-mediated trafficking of beta-arrestin1 and -2 fused to the green fluorescent protein with receptors by confocal microscopy; 3) quantification of beta-arrestin1-green fluorescent protein translocation by Western blot. Our data reveal that the receptor' cytoplasmic tail contains determinants of beta-arrestin interaction that are distinct from the phosphorylation sites and are sufficient for transient association of beta-arrestin2, but stable association requires receptor phosphorylation. Determinants in the receptor's core (Asn-289 and Lys-382) appear to regulate internalization of the receptor/beta-arrestin complex toward early endocytic endosomes during the initial step of endocytosis.  相似文献   

10.
The beta(1)-adrenergic receptor (beta(1)AR) shows the resistance to agonist-induced internalization. As beta-arrestin is important for internalization, we examine the interaction of beta-arrestin with beta(1)AR with three different methods: intracellular trafficking of beta-arrestin, binding of in vitro translated beta-arrestin to intracellular domains of beta(1)- and beta(2)ARs, and inhibition of betaAR-stimulated adenylyl cyclase activities by beta-arrestin. The green fluorescent protein-tagged beta-arrestin 2 translocates to and stays at the plasma membrane by beta(2)AR stimulation. Although green fluorescent protein-tagged beta-arrestin 2 also translocates to the plasma membrane, it returns to the cytoplasm 10-30 min after beta(1)AR stimulation. The binding of in vitro translated beta-arrestin 1 and beta-arrestin 2 to the third intracellular loop and the carboxyl tail of beta(1)AR is lower than that of beta(2)AR. The fusion protein of beta-arrestin 1 with glutathione S-transferase inhibits the beta(1)- and beta(2)AR-stimulated adenylyl cyclase activities, although inhibition of the beta(1)AR-stimulated activity requires a higher concentration of the fusion protein than that of the beta(2)AR-stimulated activity. These results suggest that weak interaction of beta(1)AR with beta-arrestins explains the resistance to agonist-induced internalization. This is further supported by the finding that beta-arrestin can induce internalization of beta(1)AR when beta-arrestin 1 does not dissociate from beta(1)AR by fusing to the carboxyl tail of beta(1)AR.  相似文献   

11.
Proteases cleave proteinase-activated receptors (PARs) to expose N-terminal tethered ligands that bind and activate the cleaved receptors. The tethered ligand, once exposed, is always available to interact with its binding site. Thus, efficient mechanisms must prevent continuous activation, including receptor phosphorylation and uncoupling from G-proteins, receptor endocytosis, and lysosomal degradation. beta-Arrestins mediate uncoupling and endocytosis of certain neurotransmitter receptors, which are activated in a reversible manner. However, the role of beta-arrestins in trafficking of PARs, which are irreversibly activated, and the effects of proteases on the subcellular distribution of beta-arrestins have not been examined. We studied trafficking of PAR2 and beta-arrestin1 coupled to green fluorescent protein. Trypsin induced the following: (a) redistribution of beta-arrestin1 from the cytosol to the plasma membrane, where it co-localized with PAR2; (b) internalization of beta-arrestin1 and PAR2 into the same early endosomes; (c) redistribution of beta-arrestin1 to the cytosol concurrent with PAR2 translocation to lysosomes; and (d) mobilization of PAR2 from the Golgi apparatus to the plasma membrane. Overexpression of a C-terminal fragment of beta-arrestin-319-418, which interacts constitutively with clathrin but does not bind receptors, inhibited agonist-induced endocytosis of PAR2. Our results show that beta-arrestins mediate endocytosis of PAR2 and support a role for beta-arrestins in uncoupling of PARs.  相似文献   

12.
beta-Arrestins are multifunctional proteins identified on the basis of their ability to bind and uncouple G protein-coupled receptors (GPCR) from heterotrimeric G proteins. In addition, beta-arrestins play a central role in mediating GPCR endocytosis, a key regulatory step in receptor resensitization. In this study, we visualize the intracellular trafficking of beta-arrestin2 in response to activation of several distinct GPCRs including the beta2-adrenergic receptor (beta2AR), angiotensin II type 1A receptor (AT1AR), dopamine D1A receptor (D1AR), endothelin type A receptor (ETAR), and neurotensin receptor (NTR). Our results reveal that in response to beta2AR activation, beta-arrestin2 translocation to the plasma membrane shares the same pharmacological profile as described for receptor activation and sequestration, consistent with a role for beta-arrestin as the agonist-driven switch initiating receptor endocytosis. Whereas redistributed beta-arrestins are confined to the periphery of cells and do not traffic along with activated beta2AR, D1AR, and ETAR in endocytic vesicles, activation of AT1AR and NTR triggers a clear time-dependent redistribution of beta-arrestins to intracellular vesicular compartments where they colocalize with internalized receptors. Activation of a chimeric AT1AR with the beta2AR carboxyl-terminal tail results in a beta-arrestin membrane localization pattern similar to that observed in response to beta2AR activation. In contrast, the corresponding chimeric beta2AR with the AT1AR carboxyl-terminal tail gains the ability to translocate beta-arrestin to intracellular vesicles. These results demonstrate that the cellular trafficking of beta-arrestin proteins is differentially regulated by the activation of distinct GPCRs. Furthermore, they suggest that the carboxyl-tail of the receptors might be involved in determining the stability of receptor/betaarrestin complexes and cellular distribution of beta-arrestins.  相似文献   

13.
Endocytosis of the low density lipoprotein (LDL) receptor (LDLR) in coated pits employs the clathrin adaptor protein ARH. Similarly, agonist-dependent endocytosis of heptahelical receptors in coated pits employs the clathrin adaptor beta-arrestin proteins. In mice fed a high fat diet, we found that homozygous deficiency of beta-arrestin2 increased total and LDL plus intermediate-density lipoprotein cholesterol levels by 23 and 53%, respectively (p < 0.05), but had no effect on high density lipoprotein cholesterol levels. We therefore tested whether beta-arrestins could affect the constitutive endocytosis of the LDLR. When overexpressed in cells, beta-arrestin1 and beta-arrestin2 each associated with the LDLR, as judged by co-immunoprecipitation, and augmented LDLR endocytosis by approximately 70%, as judged by uptake of fluorescent LDL. However, physiologic expression levels of only beta-arrestin2, and not beta-arrestin1, enhanced endogenous LDLR endocytosis (by 65%) in stably transfected beta-arrestin1/beta-arrestin2 double-knockout mouse embryonic fibroblasts (MEFs). Concordantly, when RNA interference was used to suppress expression of beta-arrestin2, but not beta-arrestin1, LDLR endocytosis was reduced. Moreover, beta-arrestin2-/- MEFs demonstrated LDLR endocytosis that was 50% less than cognate wild type MEFs. In fusion protein pull-down assays, beta-arrestin2 bound to the LDLR cytoplasmic tail stoichiometrically, and binding was abolished by mutation of LDLR Tyr807 to Ala. Mutation of LDLR cytoplasmic tail Ser833 to Asp enhanced both the affinity of LDLR fusion protein binding to beta-arrestin2, and the efficiency of LDLR endocytosis in cells expressing beta-arrestin2 physiologically. We conclude that beta-arrestin2 can bind to and enhance endocytosis of the LDLR, both in vitro and in vivo, and may thereby influence lipoprotein metabolism.  相似文献   

14.
The G protein-coupled thyrotropin-releasing hormone (TRH) receptor is phosphorylated and binds to beta-arrestin after agonist exposure. To define the importance of receptor phosphorylation and beta-arrestin binding in desensitization, and to determine whether beta-arrestin binding and receptor endocytosis are required for receptor dephosphorylation, we expressed TRH receptors in fibroblasts from mice lacking beta-arrestin-1 and/or beta-arrestin-2. Apparent affinity for [(3)H]MeTRH was increased 8-fold in cells expressing beta-arrestins, including a beta-arrestin mutant that did not permit receptor internalization. TRH caused extensive receptor endocytosis in the presence of beta-arrestins, but receptors remained primarily on the plasma membrane without beta-arrestin. beta-Arrestins strongly inhibited inositol 1,4,5-trisphosphate production within 10 s. At 30 min, endogenous beta-arrestins reduced TRH-stimulated inositol phosphate production by 48% (beta-arrestin-1), 71% (beta-arrestin-2), and 84% (beta-arrestins-1 and -2). In contrast, receptor phosphorylation, detected by the mobility shift of deglycosylated receptor, was unaffected by beta-arrestins. Receptors were fully phosphorylated within 15 s of TRH addition. Receptor dephosphorylation was identical with or without beta-arrestins and almost complete 20 min after TRH withdrawal. Blocking endocytosis with hypertonic sucrose did not alter the rate of receptor phosphorylation or dephosphorylation. Expressing receptors in cells lacking Galpha(q) and Galpha(11) or inhibiting protein kinase C pharmacologically did not prevent receptor phosphorylation or dephosphorylation. Overexpression of dominant negative G protein-coupled receptor kinase-2 (GRK2), however, retarded receptor phosphorylation. Receptor activation caused translocation of endogenous GRK2 to the plasma membrane. The results show conclusively that receptor dephosphorylation can take place on the plasma membrane and that beta-arrestin binding is critical for desensitization and internalization.  相似文献   

15.
Activated human neuropeptide Y Y(1) receptors rapidly desensitize and internalize through clathrin-coated pits and recycle from early and recycling endosomes, unlike Y(2) receptors that neither internalize nor desensitize. To identify motifs implicated in Y(1) receptor desensitization and trafficking, mutants with varying C-terminal truncations or a substituted Y(2) C-terminus were constructed. Point mutations of key putative residues were made in a C-terminal conserved motif [phi-H-(S/T)-(E/D)-V-(S/T)-X-T] that we have identified and in the second intracellular i2 loop. Receptors were analyzed by functional assays, spectrofluorimetric measurements on living cells, flow cytometry, confocal imaging and bioluminescence resonance energy transfer assays for beta-arrestin activation and adaptor protein (AP-2) complex recruitment. Inhibitory GTP-binding protein-dependent signaling of Y(1) receptors to adenylyl cyclase and desensitization was unaffected by C-terminal truncations or mutations, while C-terminal deletion mutants of 42 and 61 amino acids no longer internalized. Substitutions of Thr357, Asp358, Ser360 and Thr362 by Ala in the C-terminus abolished both internalization and beta-arrestin activation but not desensitization. A Pro145 substitution by His in an i2 consensus motif reported to mediate phosphorylation-independent recruitment of beta-arrestins affected neither desensitization, internalization or recycling kinetics of activated Y(1) receptors nor beta-arrestin activation. Interestingly, combining Pro145 substitution by His and C-terminal substitutions significantly attenuates Y(1) desensitization. In the Y(2) receptor, replacement of His155 with Pro at this position in the i2 loop motif promotes agonist-mediated desensitization, beta-arrestin activation, internalization and recycling. Overall, our results indicate that beta-arrestin-mediated desensitization and internalization of Y(1) and Y(2) receptors are differentially regulated by the C-terminal motif and the i2 loop consensus motif.  相似文献   

16.
Agonist binding to the CC chemokine receptor 5 (CCR5) induces the phosphorylation of four distinct serine residues that are located in the CCR5 C terminus. We established a series of clonal RBL-2H3 cell lines expressing CCR5 with alanine mutations of Ser(336), Ser(337), Ser(342), and Ser(349) in various combinations and explored the significance of phosphorylation sites for the ability of the receptor to interact with beta-arrestins and to undergo desensitization and internalization upon ligand binding. Receptor mutants that lack any two phosphorylation sites retained their ability to recruit endogenous beta-arrestins to the cell membrane and were normally sequestered, whereas alanine mutation of any three C-terminal serine residues abolished both beta-arrestin binding and rapid agonist-induced internalization. In contrast, RANTES (regulated on activation normal T cell expressed and secreted) stimulation of a S336A/S349A mutant triggered a sustained calcium response and enhanced granular enzyme release. This mutational analysis implies that CCR5 internalization largely depends on a beta-arrestin-mediated mechanism that requires the presence of any two phosphorylation sites, whereas receptor desensitization is independently regulated by the phosphorylation of distinct serine residues. Surface plasmon resonance analysis further demonstrated that purified beta-arrestin 1 binds to phosphorylated and nonphosphorylated C-tail peptides with similar affinities, suggesting that beta-arrestins use additional receptor sites to discriminate between nonactivated and activated receptors. Surface plasmon resonance analysis revealed beta-arrestin 1 binding to the second intracellular loop of CCR5, which required an intact Asp-Arg-Tyr triplet. These results suggest that a conserved sequence motif within the second intracellular loop of CCR5 that is known to be involved in G protein activation plays a significant role in beta-arrestin binding to CCR5.  相似文献   

17.
We have observed an unexpected type of nonreciprocal "cross-regulation" of the agonist-induced endocytosis of G protein-coupled receptors by clathrin-coated pits. Isoproterenol-dependent internalization of beta2-adrenergic receptors in stably transfected HEK293 cells was specifically blocked (>65% inhibition) by vasopressin-induced activation of V2 vasopressin receptors co-expressed at similar levels. In contrast, activation of beta2 receptors caused no detectable effect on V2 receptor internalization in the same cells. Several pieces of evidence suggest that this nonreciprocal inhibition of endocytosis is mediated by receptor-specific intracellular trafficking of beta-arrestins. First, previous studies showed that the activation of V2 but not beta2 receptors caused pronounced recruitment of beta-arrestins to endocytic membranes (Oakley, R. H., Laporte, S. A., Holt, J. A., Barak, L. S., and Caron, M. G. (1999) J. Biol. Chem. 274, 32248-32257). Second, overexpression of arrestin 2 or 3 (beta-arrestin 1 or 2) abolished the V2 receptor-mediated inhibition of beta2 receptor internalization. Third, mutations of the V2 receptor that block endomembrane recruitment of beta-arrestins eliminated the V2 receptor-dependent blockade of beta2 receptor internalization. These results identify a novel type of heterologous regulation of G protein-coupled receptors, define a new functional role of receptor-specific intracellular trafficking of beta-arrestins, and suggest an experimental method to rapidly modulate the functional activity of beta-arrestins in intact cells.  相似文献   

18.
beta-Arrestin2 not only plays essential roles in seven membrane-spanning receptor desensitization and internalization but also functions as a signal transducer in mitogen-activated protein kinase cascades. Here we show that the angiotensin II type 1A receptor-mediated activation of extracellular signal-regulated kinases 1 and 2 (ERK1/2) in HEK-293 cells is increased when the cellular level of beta-arrestin1 is down-regulated by RNA interference but is decreased or eliminated when the cellular level of beta-arrestin2 is diminished. Such reciprocal effects of down-regulated levels of beta-arrestins 1 and 2 are primarily due to differences in the ability of the two forms of beta-arrestins to directly mediate ERK activation. These results are the first to demonstrate reciprocal activity of beta-arrestin isoforms on a signaling pathway and suggest that physiological levels of beta-arrestin1 may act as "dominant-negative" inhibitors of beta-arrestin2-mediated ERK activation.  相似文献   

19.
Beta-arrestins target G protein-coupled receptors (GPCRs) for endocytosis via clathrin-coated vesicles. Beta-arrestins also become detectable on endocytic vesicles in response to angiotensin II type 1A receptor (AT1AR), but not beta2-adrenergic receptor (beta2AR), activation. The carboxyl-terminal tails of these receptors contribute directly to this phenotype, since a beta2AR bearing the AT1AR tail acquired the capacity to stimulate beta-arrestin redistribution to endosomes, whereas this property was lost for an AT1AR bearing the beta2AR tail. Using beta2AR/AT1AR chimeras, we tested whether the beta2AR and AT1AR carboxyl-terminal tails, in part via their association with beta-arrestins, might regulate differences in the intracellular trafficking and resensitization patterns of these receptors. In the present study, we find that beta-arrestin formed a stable complex with the AT1AR tail in endocytic vesicles and that the internalization of this complex was dynamin dependent. Internalization of the beta2AR chimera bearing the AT1AR tail was observed in the absence of agonist and was inhibited by a dominant-negative beta-arrestin1 mutant. Agonist-independent AT1AR internalization was also observed after beta-arrestin2 overexpression. After internalization, the beta2AR, but not the AT1AR, was dephosphorylated and recycled back to the cell surface. However, the AT1AR tail prevented beta2AR dephosphorylation and recycling. In contrast, although the beta2AR-tail promoted AT1AR recycling, the chimeric receptor remained both phosphorylated and desensitized, suggesting that receptor dephosphorylation is not a property common to all receptors. In summary, we show that the carboxyl-terminal tails of GPCRs not only contribute to regulating the patterns of receptor desensitization, but also modulate receptor intracellular trafficking and resensitization patterns.  相似文献   

20.
Classically, the FSH receptor (FSH-R) mediates its effects through coupling to guanine nucleotide-binding protein alpha S subunit (Galpha(s)) and activation of the cAMP/protein kinase A (PKA) signaling pathway. beta-Arrestins are rapidly recruited to the FSH-activated receptor and play key roles in its desensitization and internalization. Here, we show that the FSH-R expressed in HEK 293 cells activated ERK by two temporally distinct pathways dependent, respectively, on Galpha(s)/PKA and beta-arrestins. Galpha(s)/PKA-dependent ERK activation was rapid, transient, and blocked by H89 (a PKA inhibitor), but it was insensitive to small interfering RNA-mediated depletion of beta-arrestins. beta-Arrestin-dependent ERK activation was slower but more sustained and was insensitive to H89. We identified five Ser/Thr residues in the C terminus of the receptor (638-644) as a major phosphorylation site. Mutation of these residues into Ala (5A FSH-R) significantly reduced the stability of FSH-induced beta-arrestin 1 and 2 interaction when compared with the wild-type receptor. As expected, the 5A FSH-R-mediated cAMP accumulation was enhanced, and its internalization was reduced. In striking contrast, the ability of the 5A FSH-R to activate ERK via the beta-arrestin-dependent pathway was increased. G protein-coupled receptor kinase 5 (GRK5) and GRK6 were required for beta-arrestin-dependent ERK activation by both the wild-type and 5A FSH-R. By contrast, GRK2 depletion enhanced ERK activation by the wild-type FSH-R but not by the 5A FSH-R. In conclusion, we demonstrate the existence of a beta-arrestin-dependent, GRK-regulated mechanism for ERK activation by the FSH-R. A phosphorylation cluster in the C terminus of the FSH-R, identified as a site of beta-arrestin recruitment, positively regulated both desensitization and internalization but negatively regulated beta-arrestin-dependent ERK activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号