首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 694 毫秒
1.
2.
Gibberellins (GAs) are involved in many aspects of plant development, including shoot growth, flowering and wood formation. Increased levels of bioactive GAs are known to induce xylogenesis and xylem fiber elongation in aspen. However, there is currently little information on the response pathway(s) that mediate GA effects on wood formation. Here we characterize an important element of the GA pathway in hybrid aspen: the GA receptor, GID1. Four orthologs of GID1 were identified in Populus tremula  ×  P. tremuloides ( PttGID1.1–1.4 ). These were functional when expressed in Arabidopsis thaliana , and appear to present a degree of sub-functionalization in hybrid aspen. PttGID1.1 and PttGID1.3 were over-expressed in independent lines of hybrid aspen using either the 35S promoter or a xylem-specific promoter ( LMX5 ). The 35S : PttGID1 over-expressors shared several phenotypic traits previously described in 35S:AtGA20ox1 over-expressors, including rapid growth, increased elongation, and increased xylogenesis. However, their xylem fibers were not elongated, unlike those of 35S:AtGA20ox1 plants. Similar differences in the xylem fiber phenotype were observed when PttGID1.1 , PttGID1.3 or AtGA20ox1 were expressed under the control of the LMX5 promoter, suggesting either that PttGID1.1 and PttGID1.3 play no role in fiber elongation or that GA homeostasis is strongly controlled when GA signaling is altered. Our data suggest that GAs are required in two distinct wood-formation processes that have tissue-specific signaling pathways: xylogenesis, as mediated by GA signaling in the cambium, and fiber elongation in the developing xylem.  相似文献   

3.
4.
5.
6.
7.
NAC转录因子成员被认为是调控植物次生壁合成的开关。前期研究结果显示BpNAC012基因的表达能够调控白桦次生细胞壁的合成。为研究BpNAC012调控的下游靶基因,本研究分别以该基因的过表达,抑制表达株系茎为材料构建转录组,以野生型为对照分析差异表达基因。结果显示:与对照相比,过表达株系OE中上调的基因有627条,下调的基因有229条,抑制表达株系中上调的基因有299条,下调表达的基因有207条。过表达BpNAC012相对于抑制表达能够调控更多的基因表达变化。而抑制表达BpNAC012更多的是影响蛋白修饰和转运类基因的表达变化。在差异表达基因中,涉及受体信号通路,营养代谢,氨基酸合成,及苯丙烷生物合成相关代谢通路基因比较富集。BpNAC012能够调控纤维素、木质素合成及木质部发育相关基因的表达变化,同时能够调控多种转录因子的表达变化。该研究为深入分析BpNAC012在白桦次生细胞壁合成的分子调控机制奠定基础。  相似文献   

8.
Woody biomass has gained popularity as an environmentally friendly, renewable and sustainable resource for liquid fuel production. Here, we demonstrate biotechnological improvement of the quantity and quality of woody biomass by employing developing xylem (DX)‐preferential production of gibberellin (GA), a phytohormone that positively regulates stem growth. First, for the proof of concept experiment, we produced transgenic Arabidopsis plants expressing GA20‐oxidase, a key enzyme in the production of bioactive GAs, from Pinus densiflora (PdGA20ox1) under the control of either a constitutive 35S promoter, designated 35S::PdGA20ox1, or a DX‐specific promoter (originated from poplar), designated DX15::PdGA20ox1. As we hypothesized, both transgenic Arabidopsis plants (35S::PdGA20ox1 and DX15::PdGA20ox1) exhibited an accelerated stem growth that resulted in a large increase of biomass, up to 300% compared to wild‐type control plants, together with increased secondary wall thickening and elongation of fibre cells. Next, we applied our concept to the production of transgenic poplar trees. Both transgenic poplar trees (35S::PdGA20ox1 and DX15::PdGA20ox1) showed dramatic increases in biomass, up to 300%, with accelerated stem growth and xylem differentiation. Cell wall monosaccharide composition analysis revealed that in both Arabidopsis and poplar, glucose and xylose contents were significantly increased. However, undesirable phenotypes of 35S::PdGA20ox1 poplar, including poor root growth and leaf development, were found. Interestingly, DX15::PdGA20ox1 poplar resulted in a reduction of undesirable phenotypes. Our results indicate that the controlled production of GAs through a tissue‐specific promoter can be utilized as an efficient biotechnological tool for producing enhanced plant biomass, minimizing unwanted effects.  相似文献   

9.
10.
11.
12.
Jong Sik Kim  Geoffrey Daniel 《Planta》2012,236(5):1367-1379
Microdistribution of mannans in Arabidopsis stem was examined using immunolocalization with mannan-specific monoclonal antibodies (LM21 and LM22). Mannan labeling in secondary xylem cells (except for protoxylem vessels) was initially detected in the cell wall during S2 formation and increased gradually during development. Labeling in metaxylem vessels (vessels) was detected earlier than that in xylary fibers (fibers), but was much weaker than fibers. The S1 layer of vessels and fibers showed much less labeling than the S2 layer. Some strong labeling was also detected in pit membranes of vessel pits. Interfascicular fibers (If-fibers) showed more heterogeneous labeling patterns than fibers by LM21. Unlike fibers, If-fibers also revealed some strong labeling in the cell corner of the S1 layer, indicating different mannan labeling patterns between If-fibers and fibers. Interestingly, protoxylem vessels (proto-vessels) showed strong labeling at the early stage of secondary xylem formation with more intense labeling in the outer- than inner cell wall even though fibers and vessels showed no or very low labeling at this stage. Labeling intensity of proto-vessels was also much stronger than vessels and stronger or slightly weaker than fibers by LM21 and LM22, respectively. Using pectinase and mild alkali treatment, the presence of mannans in parenchymatous cells was also confirmed. Together our observations indicate that there are temporal and spatial variations in mannan labeling between cell types in the secondary xylem of Arabidopsis stems. Some similar features of mannan labeling between Arabidopsis and poplar are also discussed.  相似文献   

13.
Secondary xylem is composed of daughter cells produced by the vascular cambium in the stem. Cell proliferation of the secondary xylem is the result of long-range cell division in the vascular cambium. Most xylem cells have a thickened secondary cell wall, representing a large amount of biomass storage. Therefore, regulation of cell division in the vascular cambium and differentiation into secondary xylem is important for biomass production. Cell division is regulated by cell cycle regulators. In this study, we confirm that cell cycle regulators influence cell division in the vascular cambium in tobacco. We produced transgenic tobacco that expresses Arabidopsis thaliana cyclin D2;1 (AtcycD2;1) and AtE2Fa-DPa under the control of the CaMV35S promoter. Each gene is a positive regulator of the cell cycle, and is known to influence the transition from G1 phase to S phase. AtcycD2;1-overexpressing tobacco had more secondary xylem cells when compared with control plants. In order to evaluate cell division activity in the vascular cambium, we prepared a Populus trichocarpa cycB1;1 (PtcycB1;1) promoter containing a destruction box motif for ubiquitination and a β-glucuronidase-encoding gene (PtcycB1;1pro:GUS). In transgenic tobacco containing PtcycB1;1pro:GUS, GUS staining was specifically observed in meristem tissues, such as the root apical meristem and vascular cambium. In addition, mitosis-monitoring plants containing AtcycD2;1 had stronger GUS staining in the cambium when compared with control plants. Our results indicated that overexpression of AtcycD enhances cell division in the vascular cambium and increases secondary xylem differentiation in tobacco. Key message We succeeded in inducing cell proliferation of cambium and enlargement of secondary xylem region by AtcycD overexpression. We also evaluated mitotic activity in cambium using cyclin-GUS fusion protein from poplar.  相似文献   

14.
15.
Kim JS  Daniel G 《Planta》2012,236(4):1275-1288
We investigated the microdistribution of xylans in different cell types of Arabidopsis stem using immunolocalization methods with LM10 and LM11 antibodies. Xylan labeling in xylary fibers (fibers) was initially detected at the cell corner of the S(1) layer and increased gradually during fiber maturation, showing correlation between xylan labeling and general secondary cell wall formation processes in fibers. Metaxylem vessels (vessels) showed earlier development of secondary cell walls than fibers, but revealed almost identical labeling patterns to fibers during maturation. No difference in labeling patterns and intensity was detected in the cell wall of fibers, vessels and protoxylem vessels (proto-vessels) between LM10 and LM11, indicating that vascular bundle cells may be chemically composed of a highly homogeneous xylan type. Interestingly, interfascicular fibers (If-fibers) showed different labeling patterns between the two antibodies and also between different developmental stages. LM10 showed no labeling in primary cell walls and intercellular layers of If-fibers at the S(1) formation stage, but some labeling was detected in middle lamella cell corner regions at the S(2) formation stage. In contrast, LM11 revealed uniform labeling across the If-fiber cell wall during all developmental stages. These results suggest that If-fibers have different xylan deposition processes and patterns from vascular bundle cells. The presence of xylan was also confirmed in parenchyma cells following pectinase treatment. Together our results indicate that there are temporal and spatial differences in xylan labeling between cell types in Arabidopsis stem. Differences in xylan labeling between Arabidopsis stem and poplar are also discussed.  相似文献   

16.
The xylem of higher plants offers support to aerial portions of the plant body and serves as conduit for the translocation of water and nutrients. Terminal differentiation of xylem cells typically involves deposition of thick secondary cell walls. This is a dynamic cellular process accompanied by enhanced rates of cellulose deposition and the induction of synthesis of specific secondary-wall matrix polysaccharides and lignin. The secondary cell wall is essential for the function of conductive and supportive xylem tissues. Recently, significant progress has been made in identifying the genes responsible for xylem secondary cell wall formation. However, our present knowledge is still insufficient to account for the molecular processes by which this complex system operates. To acquire further information about xylem secondary cell walls, we initially focused our research effort on a set of genes specifically implicated in secondary cell wall formation, as well as on loss-of-function mutants. Results from two microarray screens identified several key candidate genes responsible for secondary cell wall formation. Reverse genetic analyses led to the identification of a glycine-rich protein involved in maintaining the stable structure of protoxylem, which is essential for the transport of water and nutrients. A combination of expression analyses and reverse genetics allows us to systematically identify new genes required for the development of physical properties of the xylem secondary wall.  相似文献   

17.
Mutants with altered patterns of lignification have been identified in a population of mutagenised Arabidopsis seedlings. One of the mutants exhibited ectopic lignification (eli) of cells throughout the plant that never normally lignify. The reduced expansion of eli1 cells resulted in a stunted phenotype, and xylem cells were misshapen and failed to differentiate into continuous strands, causing a disorganized xylem. Analysis of phenotypes associated with double mutants of eli1 lit (lion's tail), a cell expansion mutant, indicated that the primary defect in eli1 plants may be inappropriate initiation of secondary wall formation and subsequent aberrant lignification of cells caused by altered cell expansion. Related ectopic lignification phenotypes were also observed in other cell expansion mutants, suggesting a mechanism that senses cell size and controls subsequent secondary wall formation. Interactions between eli1 and wol (woodenleg), a mutant altering xylem cell specification, revealed a role for ELI1 in promoting formation of continuous xylem strands, and demonstrated that ELI1 functions during cell elongation zone in the primary root and other tissues.  相似文献   

18.
Xylem development is a process of xylem cell terminal differentiation that includes initial cell division, cell expansion, secondary cell wall formation and programmed cell death (PCD). PCD in plants and apoptosis in animals share many common characteristics. Caspase-3, which displays Asp-Glu-Val-Asp (DEVD) specificity, is a crucial executioner during animal cells apoptosis. Although a gene orthologous to caspase-3 is absent in plants, caspase-3-like activity is involved in many cases of PCD and developmental processes. However, there is no direct evidence that caspase-3-like activity exists in xylem cell death. In this study, we showed that caspase-3-like activity is present and is associated with secondary xylem development in Populus tomentosa. The protease responsible for the caspase-3-like activity was purified from poplar secondary xylem using hydrophobic interaction chromatography (HIC), Q anion exchange chromatography and gel filtration chromatography. After identification by liquid chromatography-tandem mass spectrometry (LC-MS/MS), it was revealed that the 20S proteasome (20SP) was responsible for the caspase-3-like activity in secondary xylem development. In poplar 20SP, there are seven α subunits encoded by 12 genes and seven β subunits encoded by 12 genes. Pharmacological assays showed that Ac-DEVD-CHO, a caspase-3 inhibitor, suppressed xylem differentiation in the veins of Arabidopsis cotyledons. Furthermore, clasto-lactacystin β-lactone, a proteasome inhibitor, inhibited PCD of tracheary element in a VND6-induced Arabidopsis xylogenic culture. In conclusion, the 20S proteasome is responsible for caspase-3-like activity and is involved in xylem development.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号