首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 194 毫秒
1.
Growth responses of a tomato cultivar Ailsa Craig and the ah-, aw- and bls-isogenic/near isogenic lines (IL/NIL) from it were evaluated and compared at cotyledons stage under salt treatment in vivo and in vitro experiments. No differences in hypocotyl and root growth responses were detected between the anthocyanin-containing and the anthocyaninless lines within the in vivo experiments. The anthocyaninless mutants, (except in some cases the bls mutant), exhibited higher callogenic and shoot-forming capacity on both, control and salinized media. It was concluded that for this reason it would be difficult to determine the relationship between the in vivo and in vitro responses of the lines studied and as well as to evaluate the usefulness of the in vitro method in testing these lines for salt tolerance.  相似文献   

2.
The organogenetic potential from callus of three tomato land races from the Canary Islands adapted to semi-arid environment (Salvaje, Rusa and Especial), and one tomato cultivar (Meltine), were examined. The response of four explant types (cotyledon, shoot apex, hypocotyl and root) to nine PGR regimes (BAP at 1 or 2 or 5 mg/l) + either IAA (0.5 mg/l) or 2,4-D (0.5 or 1 mg/l) were measured. BAP at 5 mg/l+IAA at 0.5 mg/l induced most organogenesis in all the explant types for all genotypes. Salvaje has one of the highest organogenetic potentials described in tomato.Abbreviation OP = organogenetic potential  相似文献   

3.
Direct shoot regeneration was induced from leaf explants of Alstroemeria. The explants contained a leaf blade and a small portion of stem node, which were cut from the erect shoots of in vitro multiplicated plantlets. The shoot regeneration capacity of the excised leaf explants was significantly related to the position of the explant on the stem. The youngest explant which was located closest to the shoot apex gave the highest response. A gradient response toward the shoot apex was observed in percentage of shoot regeneration and in the number of shoots per regenerating explant. Histological studies revealed that the shoots were initiated at the leaf axils. The origin of the adventitious buds was located at the epidermal layer of stem peripheral cells. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

4.
An efficient system for in vitro regeneration of red leaf beet, a variety of leaf beet (Beta vulgaris L. var cicla L.) generally used to decorate parterre and to prepare betacyanin, was developed for the first time in the present study. Shoot tip and petiole explants from the sterile seedlings, precultured on Murashige and Skoog (MS) medium with 15 mg/l 6-benzyladenine (BA) and 3% sucrose at 16 °C for 30 days, could form 81.02 and 17.33% translucent nodular (TN) calli, respectively. All TN calli were able to differentiate into adventitious shoots under the same culture conditions. Each explant with TN callus from the shoot tip and petiole could generate 8.65 shoots on average. It was found that both preculture of sterile seedlings and culture of explants at low temperature (16 °C) were vital for TN callus induction and adventitious bud formation of red leaf beet. The best condition for rooting was 0.5-strength MS medium with 10 g/l sucrose. After being transplanted into soil, plantlets grew well and could flower and bear fruits. Histological observation revealed that TN callus was derived from the cells of vascular tissue of the petiole and that adventitious shoots were formed through organogenesis. The factors influencing in vitro micropropagation are also discussed. Published in Russian in Fiziologiya Rastenii, 2009, Vol. 56, No. 4, pp. 603–608. This text was submitted by the autors in English.  相似文献   

5.
Cotyledon explants of Brassica tournefortii L. were excised from germinated seedlings and cultured on Murashige & Skoog's [6] basal medium supplemented with various combinations of cytokinins and auxins, Both cytokinin and auxin were required for induction of shoot organogenesis. Of the three cytokinins tested (in combination with a low concentration of IAA), kinetin was found to be the best for shoot regeneration. On this medium, cotyledonary explants invariably underwent callusing followed by multiple shoot formation. NAA in combination with any of the three cytokinins yielded a reduced number of shoots or none, but favoured good callus growth. Callus so produced also regenerated shoots when subcultured on media containing high concentration of KIN or ZEA and low concentration of IAA. Shoots were rooted during prolonged incubation on the same medium or on MS medium free of growth regulators. Mature plants were grown in the greenhouse.  相似文献   

6.
Thin layer explants taken from the pedicels and peduncles of flowering tomato plants yielded calli with great organogenetic potential. Of the 15 cultivars tested, 7 regenerated roots, shoots and eventually entire fruit-bearing plants. Calli grown on modified Murashige-Skoog medium responded to varied auxins and cytokinins with different morphogenetic patterns. Thus, naphthaleneacetic acid yielded root-producing calli, while the auxin precursor isatin (indole 2,3-dione) caused the production of calli with vegetative and floral shoots, rarely yielding roots. This may be related to isatin's slow, steady conversion to an active auxin (Plant Physiol 41:1485–1488, 1966) in contrast with naphthaleneacetic acid's immediate presentation of a high level of active auxin. The highest incidence of vegetative shoot (100%) and flower (50%) formation was obtained with 10 M isatin and 3 M zeatin. A few of the flowers developed into ripe fruits. The high frequency of induction of vegetative shoots and flowers before roots with isatin suggests its utility in micropropagation from plant tissue cultures.Abbreviations BAP benzylaminopurine - 2, 4-D 2, 4-dichlorophenoxyacetic acid - GA3 gibberellic acid - IAA indole-3-acetic acid - IBA indole-3-butyric acid - IPA isopentyladenosine - KN kinetin - NAA naphthaleneacetic acid  相似文献   

7.
番茄耐盐体细胞变异体的离体筛选   总被引:21,自引:3,他引:21  
以上海主要栽培番茄品种“鲜丰”的下胚轴作为外植体诱导愈伤组织,用NaCl进行直接高盐胁迫和逐渐加大盐浓度胁迫筛选。研究结果表明,逐渐NaCl浓度胁迫筛选获得的耐盐性大多属生理适应性,直接高盐胁迫筛选才有可能获得真正的耐盐突变体。直接高盐胁迫筛选再生出的12株耐盐植株,在150mmol/L NaCl的盐胁迫下,幼苗的成活率可达66%,而未经胁迫筛选过的原始株成活率则为零。其中,2株耐盐突变株能正常开花、结果。其在盐胁迫培养基中芽体的生根率、鲜重及干重均显著高于原始株。  相似文献   

8.
利用花粉管通道技术培育番茄耐盐新种质   总被引:12,自引:0,他引:12  
利用白花授粉后形成的花粉管通道分别将番茄耐盐野生近缘种Lycopersicon peruvianum LAlll、Lycopersicon cheesmanii LAl66、Lycopersicon pennellii LA716、Lycopersicon pimpinellifolium LA2184的总DNA及含来源于大麦LEA基因家族的HVAl基因的pBY520质粒DNA导人栽培番茄“鲜丰”及“矮黄”,获得了较为广泛的变异,经过对后代的选择培育获得了一批农艺性状优良的耐盐新种质,并已培育耐盐新品系1个;传统的叶色遗传与现代的PCR检测表明番茄通过花粉管通道导人外源DNA是可行的。  相似文献   

9.
红豆草耐盐愈伤组织的筛选及植株再生   总被引:10,自引:3,他引:10  
将红豆草种子在含1.2%NaCl的MS培养基上萌发以消除盐敏感的幼苗,把存活的幼苗下胚轴切段在含1mg/L2,4-D、0.5mg/L6-BA及1.2%NaCl的MS培养基上诱导愈伤组织,通过连续筛选得到可耐受1.8%NaCl的愈伤组织,在有0.2mg/L NAA和1mg/L IAA存在下该愈伤组织分化出芽,待幼,待幼苗长至3cm左右时转至含2mg/LNAA和或IBA的1/2MS培养基上生根。对对照  相似文献   

10.
A method for callus induction, adventitious bud regeneration, shoot multiplication and rooting of in vitro formed shoots of Helianthus annuus L. var. Argentario is described. Hypocotyl and cotyledon explants formed callus on medium containing 2 mgl–1 naphthalene acetic acid and 0.5 mgl–1 benzyladenine. Adventitious buds were formed on hypocotyl segments on medium containing 0.5–2 mgl–1 benzyladenine. The optimal level of sucrose concentration for shoot regeneration from hypocotyls was 1.5%. Multiplication from shoot apices was promoted by kinetin (2 mgl–1) plus gibberellic acid (5 mgl–1), benzyladenine (2 mgl–1) plus gibberellic acid (10 mgl–1) or at lower frequency by benzyladenine (1 mgl–1). A general feature of the plantlets formed in vitro was the precocious flowering.  相似文献   

11.
ASR1 is a plant‐specific, highly charged, low molecular weight polypeptide. Purified ASR1 was shown to posses sequence specific Zn2+‐dependent DNA binding activity (Kalifa et al. Biochemical Journal 381, 373–378, 2004). Steady‐state levels of tomato Asr1 mRNA and protein are transiently increased following exposure of plants to polyethylene glycol, NaCl or abscisic acid. The biological role of ASR1 could not be deduced from sequence analyses or sequence homologies. Tobacco plants over‐expressing tomato ASR1 have a decreased rate of water loss and improved salt tolerance. Upon exposure to salt, ASR1‐over‐expressing plants accumulate less Na+ and proline than wild‐type plants, and also results in increased steady‐state levels of other gene products under non‐stressed plant growth conditions. Therefore, ASR1 is probably involved in the regulation of water‐ or salt‐stress‐modulated gene expression.  相似文献   

12.
Cultivated tomato Lycopersicon esculentum (L.) Mill. cv. P-73 and its wild salt-tolerant relative L. pennellii (Correll) D'Arcy accession PE-47 growing on silica sand in a growth chamber were exposed to 0, 70, 140 and 210 m M NaCl nutrient solutions 35 days after sowing. The saline treatments were imposed for 4 days, after which the plants were rinsed with distilled water. Salinity in L. esculentum reduced leaf area and leaf and shoot dry weights. The reductions were more pronounced when sodium chloride was removed from the root medium. Reduction in leaf area and weight in L. pennellii was only observed after the recovery period. In both genotypes salinity induced a progressive reduction in leaf water potential and leaf conductance. During the recovery period leaf water potential (ψ1) and leaf conductance (g1) reached levels similar to those of control plants in wild and cultivated species, respectively. Leaf osmotic potential at full turgor (ψos) decreased in the salt treated plants of both genotypes, whereas the bulk modulus of elasticity was not affected by salinity. Leaf water potential at turgor loss point (ψtlp) and relative water content at turgor loss point (RWCtlp) appeared to be controlled by leaf osmotic potential at full turgor (ψos) and by bulk modulus of elasticity, respectively. At lowest salinity, the wild species carried out the osmotic adjustment based almost exclusively on Cl and Na+, with a marked energy savings. Under highest salinity, this species accommodate the stress through a higher expenditure of energy due to the contribution of organic solutes to the osmotic adjustment. The domesticated species carried out the osmotic adjustment based always on an important contribution of organic solutes.  相似文献   

13.
The possibility of using in vitro shoot apex culture to evaluate salt tolerance of cultivated (Lycopersicon esculentum Mill.) and wild (Lycopersicon pennellii (Correll) D'Arcy) tomato species was determined and related to the response obtained by callus culture. Both apices and calluses were grown on media supplemented with 0, 35, 70, 105, 140, 175 and 210 mM NaCl, and growth and physiological traits were determined. Most apices of L. esculentum did not develop roots from low NaCl levels, whereas the apices of L. pennellii were able to develop roots at the different salt levels. This different degree of salt tolerance between L. esculentum and L. pennellii was not, however, clearly shown on the basis of the shoot growth of the plantlets. The callus response was similar to that shown by the rooting parameters, as callus growth in response to increased salinity was much greater in L. pennellii than in the tomato cultivar. K+decreased more and proline accumulated less with salinity in shoots of L. esculentum compared to L. pennellii, whereas the opposite response was obtained in calluses. The results obtained in this study suggest that rooting parameters are the most useful traits for rapid evaluation and screening of tomato species and segregating populations through in vitro shoot apex culture. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

14.
15.
An efficient system for the in vitro plant and shootregeneration of Lilium longiflorum was developed andaccomplished using transverse thin cell layers (tTCL) of young stems.tTCLs were cut transversely along young stems from which the shoot-tipshad been removed. Sections were measured accurately using a graded gridand were cut in 4 mm × 4 mm × 1 mm cubes, eliminatingepidermal tissue, and were cultured on one-half MS medium containing 8 gl–1 agar, different sucrose concentrations (10, 20, 30 or 40g l–1), and with or without 1 mg l–1 activatedcharcoal (AC). Plants formed on the surface of tTCLs within 60 days onone-half MS medium containing 8 g l–1 agar and 20 gl–1 sucrose. Sections of 1 mm taken just below the apicalarea developed buds within 15 days, whereas the sections closer to thebase required about 45 days. Shoot regeneration was enhanced whensucrose concentration was used at 30 or 40 g l–1 after 60days of culture. No root formation occurred. Both shooting and rootingoccurred when sucrose was used at 20 g l–1. The plantletswere transferred to soil and grew well under greenhouseconditions.  相似文献   

16.
Abstract

A protocol of protoplast isolation from Egyptian varieties of pea and bean is reported. Protoplast cultures were established from apical shoots of pea (Pisum sativum) and suspension cultures of bean (Phaseolus vulgaris). To isolate protoplasts of pea, apical shoot tissues were digested for 10 h using enzyme solution containing 1% pectinase, 0.5% cellulase, 0.5% hemicellulase, 10% mannitol and 0.1% CaCl2-2H2O. For protoplast isolation from suspension culture of bean, collected cells were incubated for 6 h in digestion solution containing 0.5% pectinase, 0.25% of each of cellulase and hemicellulase, 10% mannitol and 0.1% CaCl2-2H2O. Purified protoplasts were cultured in liquid culture medium. Microcalli were obtained after 30 days of culture. Calli colonies with a diameter of about 5 mm were developed after one month of culturing on solid B5 medium containing 2% sucrose, 2 g/l casein hydrolysate, 0.7% agar and supplemented with either 1 mg/l of each 2,4-D and kin in case of pea or 2 mg/l 2,4-D+0.5 mg/l kin in case of bean. Protoplast derived callus of pea was successfully differentiated into shoot and root, and highest frequency of shoot organogenesis was recorded on medium containing 0.5 mg/l NAA+2 mg/l BA. Protoplast derived callus of bean, on the other hand, gave rise to a high frequency of root formation when cultured on medium containing 1 mg/l NAA, but attempts to regenerate shoots from this callus was unsuccessfull.  相似文献   

17.
18.
Nodal expiants ofSpilanthes acmella produced normal multiple shoots when cultured vertically on Murashige and Skoog medium (1962) supplemented with 0.5 mg IT1 BA. The number of shoots formed from each expiant was doubled after first 5-week subculture. The nodal expiants placed vertically in Erlenmeyer flask (250, 500, or 1000 mL) produced more multiple shoots than those cultured in 350 mL jam bottles and 500 mL tex-Z flask. Temperature above 28C caused abnormalities of in vitro plantlets. All in vitro plantlets survived after acclimatized and transferred to the outside environment The survived plantlets did not show any morphological abnormalities in the field condition.  相似文献   

19.
Abstract

Pulsed magnetic field (PMF) effects on soybean plant regeneration under salt stress conditions were investigated. Seedlings were raised from seeds pre-treated with 0.1, 1.0, 10.0 and 100.0 Hz PMF. Cotyledonary nodal (CN) explants from PMF exposed and unexposed seedlings were cultured in media containing different concentrations of NaCl (0, 10, 20, 30 and 40 mM). In CN explants from unexposed seedlings, increasing salt concentration progressively suppressed the regeneration and development of shoots and roots. Plantlets were regenerated only on medium containing 0, 10, 20 and 30 mM NaCl. The highest dose of NaCl (40 mM) failed to induce shoot formation and strongly reduced the number of roots which also exhibited reduced length. Cotyledonary nodal explants from PMF exposed seedlings, cultured at 10, 20 and 30 mM NaCl, exhibited a higher frequency of shoot and root regeneration, as well as a higher number and length of shoots and roots compared to unexposed ones, with 1.0 Hz frequency resulting the most efficient in promoting regeneration. At 40 mM NaCl, the promotive effect of different PMFs frequencies was related to the induction of a greater number of roots and the enhancement of root length. Our results suggest that PMF pre-treatment could help the regeneration of soybean under salt stressed condition.  相似文献   

20.
Summary The lens of the eye is one of the rare organs in which tumors do not occur spontaneously. It therefore appeared to us that lens cells would not present the background of spontaneous transformation toward malignancy found with many other cell cultures. We have cultured C3H/HeA mouse lens explant (MLE) cells for 70 wk an analyzed changes in malignancy-related phenotypes in function of the number of passages. In vitro, we studied morphology, colony forming efficiency on tissue culture plastic substrate (CFEtc) and in soft agar, population doubling time, saturation density, and invasiveness into precultured chick heart fragments. In vivo, tumorigenicity, invasion, and metastasis were analyzed after injection of cell suspensions subcutaneously and intraperitoneally, after implantation of cells aggregated to collagen sponges under the renal capsule and after implantation of cell aggregates subcutaneously into the tail and into the pinna. The CFEtc, population doubling time, and saturation density increased as the number of passages of culture in vitro increased, but colony formation in soft agar was never observed. MLE cells till passage 16 were not invasive in vitro, but hereafter consistently were found to be invasive. After about 17 passages, corresponding to 25 wk of culture, MLE cells acquired the capacity to form tumors in syngeneic mice. These tumors were invasive but metastases were not observed, We concluded that MLE cells acquired in an apparently spontaneous way a number of malignancy-related phenotypes, without, however, reaching the stage of metastasis. L. M. is a recipient of a fellowship from the IWONL, Belgium. This work was supported by the Belgisch Werk Tegen Kanker and the Internationale Stichting Jacques Brel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号