首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hereditary tyrosinemia type 1 (HT1) is the most severe metabolic disease associated with tyrosine catabolism. An accumulation of toxic metabolites seems responsible for the pathology of HT1. The metabolite fumarylacetoacetate, accumulating due to a deficiency in fumarylacetoacetate hydrolase, displays apoptogenic, mutagenic, aneugenic and mitogenic activities. These effects may underlie the tumorigenic phenomenon observed in HT1. Fumarylacetoacetate in addition to causing disturbances in Ca2+ homeostasis, may induce endoplasmic reticulum stress.  相似文献   

2.
R Jorquera  R M Tanguay 《FASEB journal》1999,13(15):2284-2298
Hereditary tyrosinemia type I is the most severe metabolic disease of the tyrosine catabolic pathway mainly affecting the liver. It is caused by deficiency of fumarylacetoacetate hydrolase, which prevents degradation of the toxic metabolite fumarylacetoacetate (FAA). We report here that FAA induces common effects (i.e., cell cycle arrest and apoptosis) in both human (HepG2) and rodent (Chinese hamster V79) cells, effects that seem to be temporally related. Both the antiproliferative and apoptosis-inducing activities of FAA are dose dependent and enhanced by glutathione (GSH) depletion with L-buthionine-(S,R)-sulfoximine (BSO). Short treatment (2 h) with 35 microM FAA/+BSO or 100 microM FAA/-BSO induced a transient cell cycle arrest at the G2/M transition (20% and 37%, respectively) 24 h post-treatment. In cells treated with 100 microM FAA/-BSO, an inactivation, followed by a rapid over-induction of cyclin B-dependent kinase occurred, which peaked 24 h post-treatment. Maximum levels of caspase-1 and caspase-3 activation were detected at 3 h and 32 h, respectively, whereas release of mitochondrial cytochrome c was maximal at 24-32 h post-treatment. The G2/M peak declined 24 h later, concomitantly with the appearance of a sub-G1, apoptotic population showing typical nucleosomal-sized DNA fragmentation and reduced mitochondrial transmembrane potential (Deltapsi(m)). These events were prevented by the general caspase inhibitor z-VAD-fmk, whereas G2/M arrest and subsequent apoptosis were abolished by GSH-monoethylester or N-acetylcysteine. Other tyrosine metabolites, maleylacetoacetate and succinylacetone, had no antiproliferative effects and induced only very low levels of apoptosis. These results suggest a modulator role of GSH in FAA-induced cell cycle disturbance and apoptosis where activation of cyclin B-dependent kinase and caspase-1 are early events preceding mitochondrial cytochrome c release, caspase-3 activation, and Deltapsi(m) loss. -Jorquera, R., Tanguay, R. M. Cyclin B-dependent kinase and caspase-1 activation precedes mitochondrial dysfunction in fumarylacetoacetate-induced apoptosis.  相似文献   

3.
In eukaryotes and many bacteria, tyrosine is degraded to produce energy via a five-step tyrosine degradation pathway. Mutations affecting the tyrosine degradation pathway are also of medical importance as mutations affecting enzymes in the pathway are responsible for type I, type II, and type III tyrosinemia. The most severe of these is type I tyrosinemia, which is caused by mutations affecting the last enzyme in the pathway, fumarylacetoacetate hydrolase (FAH). So far, tyrosine degradation in the nematode Caenorhabditis elegans has not been studied; however, genes predicted to encode enzymes in this pathway have been identified in several microarray, proteomic, and RNA interference (RNAi) screens as perhaps being involved in aging and the control of protein folding. We sought to identify and characterize the genes in the worm tyrosine degradation pathway as an initial step in understanding these findings. Here we describe the characterization of the K10C2.4, which encodes a homolog of FAH. RNAi directed against K10C2.4 produces a lethal phenotype consisting of death in young adulthood, extensive damage to the intestine, impaired fertility, and activation of oxidative stress and endoplasmic stress response pathways. This phenotype is due to alterations in tyrosine metabolism as increases in dietary tyrosine enhance it, and inhibition of upstream enzymes in tyrosine degradation with RNAi or genetic mutations reduces the phenotype. We also use our model to identify genes that suppress the damage produced by K10C2.4 RNAi in a pilot genetic screen. Our results establish worms as a model for the study of type I tyrosinemia.  相似文献   

4.
Hereditary tyrosinemia type I is caused by deficiency of the enzyme fumarylacetoacetate hydrolase (FAH) (EC 3.7.1.2), the final step in tyrosine degradation. We report here the cloning and sequencing of a full length cDNA coding for murine FAH. This cDNA is highly homologous to the previously cloned human and rat genes.  相似文献   

5.
Hereditary tyrosinemia type 1 is an autosomal recessive metabolic disorder, which is caused by a defective fumarylacetoacetate hydrolase enzyme, and consequently metabolites such as succinylacetone and p-hydroxyphenylpyruvate accumulate. We used a modified comet assay to determine the effect of these metabolites on base- and nucleotide excision repair pathways. Our results indicate that the metabolites affected the repair mechanisms differently, since the metabolites had a bigger detrimental effect on BER than on NER.  相似文献   

6.
Hereditary tyrosinemia type 1 (HT1) is an autosomal recessive disease caused by a deficiency of the enzyme involved in the last step of tyrosine degradation, fumarylacetoacetate hydrolase (FAH). Thus far, 34 mutations in the FAH gene have been reported in various HT1 patients. Site-directed mutagenesis of the FAH cDNA was used to investigate the effects of eight missense mutations found in HTI patients on the structure and activity of FAH. Mutated FAH proteins were expressed in Escherichia coli and in mammalian CV-1 cells. Mutations N16I, F62C, A134D, C193R, D233V, and W234G lead to enzymatically inactive FAH proteins. Two mutations (R341W, associated with the pseudo-deficiency phenotype, and Q279R) produced proteins with a level of activity comparable to the wild-type enzyme. The N16I, F62C, C193R, and W234G variants were enriched in an insoluble cellular fraction, suggesting that these amino acid substitutions interfere with the proper folding of the enzyme. Based on the tertiary structure of FAH, on circular dichroism data, and on solubility measurements, we propose that the studied missense mutations cause three types of structural effects on the enzyme: 1) gross structural perturbations, 2) limited conformational changes in the active site, and 3) conformational modifications with no significant effect on enzymatic activity.  相似文献   

7.
The human protein FLJ36880 belongs to the fumarylacetoacetate hydrolase family. The X-ray structure of FLJ36880 has been determined to 2.2 A resolution employing the semi-automated high-throughput structural genomics approach of the Protein Structure Factory. FLJ36880 adopts a mixed beta-sandwich roll fold and forms homodimers in crystals as well as in solution. One Mg2+ ion is bound to each subunit of the dimeric protein by coordination to three carboxylate oxygens and three water molecules. These metal binding sites are accessible from the same surface of the dimer, partly due to the disorder of the undecapeptide stretch D29 to L39. The overall structure and metal binding site of FLJ36880 bear clear similarities to the C-terminal domain of the bifunctional enzyme HpcE from Escherichia coli C, fumarylacetoacetate hydrolase from Mus musculus and to YcgM (Apc5008) from E. coli 1262. These similarities provide a framework for suggesting biochemical functions and evolutionary relationships of FLJ36880. It appears highly probable that the metal binding sites are involved in an enzymatic activity related to the catabolism of aromatic amino acids. Two point mutations in the active-site of FAH, responsible for the metabolic disease hereditary tyrosinemia type I (HTI) in humans, affect residues that are structurally conserved in FLJ36880 and located in the putative catalytic site.  相似文献   

8.
Tyrosinemia type 1 (HT1) is an autosomal recessive disorder of the tyrosine metabolism in which the fumarylacetoacetate hydrolase enzyme is defective. This disease is clinically heterogeneous and a chronic and acute form is discerned. Characteristic of the chronic form is the development of cellular hepatocarcinoma. Although p-hydroxyphenylpyruvic acid (pHPPA) is used as one of the diagnostic markers of this disease, it was suggested that it is unlikely to be involved in the pathophysiology of HT1 as it is present in other disorders that does not have hepatorenal symptoms. It was the aim of this study to investigate the possible effect of pHPPA on DNA damage and repair in mammalian cells. The comet assay was used to establish the genotoxicity of pHPPA in human peripheral blood lymphocytes and isolated rat hepatocytes after their exposure to pHPPA. At first glance the damage to DNA caused by pHPPA seemed reparable in both cell types, however, after challenging the DNA repair capacity of metabolite-treated cells with treatment with H(2)O(2), a marked impairment in the DNA repair capability of these cells was observed. We suggest that the main effect of pHPPA is the long-term impairment of the DNA repair machinery rather than the direct damage to DNA and that this effect of pHPPA, together with the other characteristic metabolites, e.g., FAA and MAA, causes cellular hepatocarcinoma to develop in the chronic form of HT1.  相似文献   

9.
In mammals, the catabolic pathway of phenylalanine and tyrosine is found in liver (hepatocytes) and kidney (proximal tubular cells). There are well-described human diseases associated with deficiencies of all enzymes in this pathway except for maleylacetoacetate isomerase (MAAI), which converts maleylacetoacetate (MAA) to fumarylacetoacetate (FAA). MAAI is also known as glutathione transferase zeta (GSTZ1). Here, we describe the phenotype of mice with a targeted deletion of the MAAI (GSTZ1) gene. MAAI-deficient mice accumulated FAA and succinylacetone in urine but appeared otherwise healthy. This observation suggested that either accumulating MAA is not toxic or an alternate pathway for MAA metabolism exists. A complete redundancy of MAAI could be ruled out because substrate overload of the tyrosine catabolic pathway (administration of homogentisic acid, phenylalanine, or tyrosine) resulted in renal and hepatic damage. However, evidence for a partial bypass of MAAI activity was also found. Mice doubly mutant for MAAI and fumarylacetoacetate hydrolase (FAH) died rapidly on a normal diet, indicating that MAA could be isomerized to FAA in the absence of MAAI. Double mutants showed predominant renal injury, indicating that this organ is the primary target for the accumulated compound(s) resulting from MAAI deficiency. A glutathione-mediated isomerization of MAA to FAA independent of MAAI enzyme was demonstrated in vitro. This nonenzymatic bypass is likely responsible for the lack of a phenotype in nonstressed MAAI mutant mice.  相似文献   

10.
Fumarylacetoacetate hydrolase (FAH) catalyzes the hydrolytic cleavage of a carbon-carbon bond in fumarylacetoacetate to yield fumarate and acetoacetate as the final step of Phe and Tyr degradation. This unusual reaction is an essential human metabolic function, with loss of FAH activity causing the fatal metabolic disease hereditary tyrosinemia type I (HT1). An enzymatic mechanism involving a catalytic metal ion, a Glu/His catalytic dyad, and a charged oxyanion hole was previously proposed based on recently determined FAH crystal structures. Here we report the development and characterization of an FAH inhibitor, 4-(hydroxymethylphosphinoyl)-3-oxo-butanoic acid (HMPOBA), that competes with the physiological substrate with a K(i) of 85 microM. The crystal structure of FAH complexed with HMPOBA refined at 1.3-A resolution reveals the molecular basis for the competitive inhibition, supports the proposed formation of a tetrahedral alkoxy transition state intermediate during the FAH catalyzed reaction, and reveals a Mg(2+) bound in the enzyme's active site. The analysis of FAH structures corresponding to different catalytic states reveals significant active site side-chain motions that may also be related to catalytic function. Thus, these results advance the understanding of an essential catabolic reaction associated with a fatal metabolic disease and provide insight into the structure-based development of FAH inhibitors.  相似文献   

11.
12.
Endoplasmic reticulum (ER) stress signaling is an adaptive cellular response to the loss of ER Ca(2+) homeostasis and/or the accumulation of misfolded, unassembled, or aggregated proteins in the ER lumen. ER stress-activated signaling pathways regulate protein synthesis initiation and can also trigger apoptosis through the ER-associated caspase 12. Viruses that utilize the host cell ER as an integral part of their life cycle would be predicted to cause some level of ER stress. Bovine viral diarrhea virus (BVDV) is a positive-stranded RNA virus of the Flaviviridae family. BVDV and related flaviviruses use the host ER as the primary site of envelope glycoprotein biogenesis, genomic replication, and particle assembly. We are using a cytopathic strain of BVDV (cpBVDV) that causes cellular apoptosis as a model system to determine how virus-induced ER stress contributes to pathogenesis. We show that, in a natural infection of MDBK cells, cpBVDV activates the ER transmembrane kinase PERK (PKR-like ER kinase) and causes hyperphosphorylation of the translation initiation factor eIF2 alpha, consistent with the induction of an ER stress response. Additionally, we show that initiation of cellular apoptosis correlates with downregulation of the antiapoptotic Bcl-2 protein, induced expression of caspase 12, and a decrease in intracellular glutathione levels. Defining the molecular stress pathways leading to cpBVDV-induced apoptosis provides the basis to study how other ER-tropic viruses, such as hepatitis C and B viruses, modulate the host cell ER stress response during the course of persistent infection.  相似文献   

13.
14.
van Dyk E  Pretorius PJ 《Gene》2012,495(1):56-61
The autosomal recessive disorder, hereditary tyrosinemia type 1 (HT1), is caused by a defective fumarylacetoacetate hydrolase enzyme. Consequently intermediate metabolites such as fumarylacetoacetate, succinylacetone and p-hydroxyphenylpyruvic acid accumulate. Characteristic to HT1 is the development of hepatocellular carcinoma, irrespective of dietary intervention or pharmacological treatment. Carcinogenesis may occur through a chromosomal instability mutator phenotype or a microsatellite instability phenotype, and deficient DNA repair may be a contributing factor thereof. The purpose of this study was to investigate the expression of DNA repair proteins, and the possible occurrence of microsatellite instability in HT1. Gene expression analyses show low expression of hOGG1 and ERCC1 in HT1 patient lymphocytes. Results from microsatellite instability analyses show allelic imbalance on chromosome 7 of the fah−/− mouse genome, and instability of the D2S123, D5S346 and (possibly) D17S250 microsatellite markers, in HT1 patient lymphocytes.  相似文献   

15.
Autophagy is an evolutionary conserved, indispensable, lysosome-mediated degradation process, which helps in maintaining homeostasis during various cellular traumas. During stress, a context-dependent role of autophagy has been observed which drives the cell towards survival or death depending upon the type, time, and extent of the damage. The process of autophagy is stimulated during various cellular insults, e.g. oxidative stress, endoplasmic reticulum stress, imbalances in calcium homeostasis, and altered mitochondrial potential. Ionizing radiation causes ROS-dependent as well as ROS-independent damage in cells that involve macromolecular (mainly DNA) damage, as well as ER stress induction, both capable of inducing autophagy. This review summarizes the current understanding on the roles of oxidative stress, ER stress, DNA damage, altered mitochondrial potential, and calcium imbalance in radiation-induced autophagy as well as the merits and limitations of targeting autophagy as an approach for radioprotection and radiosensitization.  相似文献   

16.
To examine the role of early carbohydrate recognition/trimming reactions in targeting endoplasmic reticulum (ER)-retained, misfolded glycoproteins for ER-associated degradation (ERAD), we have stably expressed the cog thyroglobulin (Tg) mutant cDNA in Chinese hamster ovary cells. We found that inhibitors of ER mannosidase I (but not other glycosidases) acutely suppressed Cog Tg degradation and also perturbed the ERAD process for Tg reduced with dithiothreitol as well as for gamma-carboxylation-deficient protein C expressed in warfarin-treated baby hamster kidney cells. Kifunensine inhibition of ER mannosidase I also suppressed ERAD in castanospermine-treated cells; thus, suppression of ERAD does not require lectin-like binding of ER chaperones calnexin and calreticulin to monoglucosylated oligosaccharides. Notably, the undegraded protein fraction remained completely microsome-associated. In pulse-chase studies, kifunensine-sensitive degradation was still inhibitable even 1 h after Tg synthesis. Intriguingly, chronic treatment with kifunensine caused a 3-fold accumulation of Cog Tg in Chinese hamster ovary cells and did not lead to significant induction of the ER unfolded protein response. We hypothesize that, in a manner not requiring lectin-like activity of calnexin/calreticulin, the recognition or processing of a specific branched N-linked mannose structure enhances the efficiency of glycoprotein retrotranslocation from the ER lumen.  相似文献   

17.
ER quality control consists of monitoring protein folding and targeting misfolded proteins for proteasomal degradation. ER stress results in an unfolded protein response (UPR) that selectively upregulates proteins involved in protein degradation, ER expansion, and protein folding. Given the efficiency in which misfolded proteins are degraded, there likely exist cellular factors that enhance the export of proteins across the ER membrane. We have reported that translocating chain-associated membrane protein 1 (TRAM1), an ER-resident membrane protein, participates in HCMV US2- and US11-mediated dislocation of MHC class I heavy chains (Oresic, K., Ng, C.L., and Tortorella, D. 2009). Consistent with the hypothesis that TRAM1 is involved in the disposal of misfolded ER proteins, cells lacking TRAM1 experienced a heightened UPR upon acute ER stress, as evidenced by increased activation of unfolded protein response elements (UPRE) and elevated levels of NF-κB activity. We have also extended the involvement of TRAM1 in the selective degradation of misfolded ER membrane proteins Cln6M241T and US2, but not the soluble degradation substrate α1-antitrypsin nullHK. These degradation model systems support the paradigm that TRAM1 is a selective factor that can enhance the dislocation of ER membrane proteins.  相似文献   

18.
BACKGROUND: Fumarylacetoacetate hydrolase (FAH) catalyzes the final step of tyrosine and phenylalanine catabolism, the hydrolytic cleavage of a carbon-carbon bond in fumarylacetoacetate, to yield fumarate and acetoacetate. FAH has no known sequence homologs and functions by an unknown mechanism. Carbon-carbon hydrolysis reactions are essential for the human metabolism of aromatic amino acids. FAH deficiency causes the fatal metabolic disease hereditary tyrosinemia type I. Carbon-carbon bond hydrolysis is also important in the microbial metabolism of aromatic compounds as part of the global carbon cycle. RESULTS: The FAH crystal structure has been determined by rapid, automated analysis of multiwavelength anomalous diffraction data. The FAH polypeptide folds into a 120-residue N-terminal domain and a 300-residue C-terminal domain. The C-terminal domain defines an unusual beta-strand topology and a novel 'mixed beta-sandwich roll' structure. The structure of FAH complexed with its physiological products was also determined. This structure reveals fumarate binding near the entrance to the active site and acetoacetate binding to an octahedrally coordinated calcium ion located in close proximity to a Glu-His dyad. CONCLUSIONS: FAH represents the first structure of a hydrolase that acts specifically on carbon-carbon bonds. FAH also defines a new class of metalloenzymes characterized by a unique alpha/beta fold. A mechanism involving a Glu-His-water catalytic triad is suggested based on structural observations, sequence conservation and mutational analysis. The histidine imidazole group is proposed to function as a general base. The Ca(2+) is proposed to function in binding substrate, activating the nucleophile and stabilizing a carbanion leaving group. An oxyanion hole formed from sidechains is proposed to stabilize a tetrahedral alkoxide transition state. The proton transferred to the carbanion leaving group is proposed to originate from a lysine sidechain. The results also reveal the molecular basis for mutations causing the hereditary tyrosinemia type 1.  相似文献   

19.
The unfolded protein response (UPR) is a cellular recovery mechanism activated by endoplasmic reticulum (ER) stress. The UPR is coordinated with the ER-associated degradation (ERAD) to regulate the protein load at the ER. In the present study, we tested how membrane protein biogenesis is regulated through the UPR in epithelia, using the cystic fibrosis transmembrane conductance regulator (CFTR) as a model. Pharmacological methods such as proteasome inhibition and treatment with brefeldin A and tunicamycin were used to induce ER stress and activate the UPR as monitored by increased levels of spliced XBP1 and BiP mRNA. The results indicate that activation of the UPR is followed by a significant decrease in genomic CFTR mRNA levels without significant changes in the mRNA levels of another membrane protein, the transferrin receptor. We also tested whether overexpression of a wild-type CFTR transgene in epithelia expressing endogenous wild-type CFTR activated the UPR. Although CFTR maturation is inefficient in this setting, the UPR was not activated. However, pharmacological induction of ER stress in these cells also led to decreased endogenous CFTR mRNA levels without affecting recombinant CFTR message levels. These results demonstrate that under ER stress conditions, endogenous CFTR biogenesis is regulated by the UPR through alterations in mRNA levels and posttranslationally by ERAD, whereas recombinant CFTR expression is regulated only by ERAD. endoplasmic reticulum-associated degradation; messenger ribonucleic acid  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号