首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 279 毫秒
1.
We recorded cerebral magnetic fields to electric stimulation of the tongue in 7 healthy adults. The two main deflections of the response peaked around 55 msec (P55m) and 140 msec (N 140 m). During both oof them the magnetic field pattern, determined with a 7- or 24-channel SQUID magnetometer, suggested a dipolar current source. The topography of P55m can be explained by a tangential dipole at the first somatosensory cortex (SI) in the posterior wall of the central sulcus. The equivalent source of N140m is, on average, about 1 cm lateral to the source of P55m. The reported method allows non-invasive determination of the cortical tongue representation area.  相似文献   

2.
Some plant leaves display complex, orientation-dependent, proton nuclear magnetic resonance (1H NMR) spectra. The spectral patterns vary as the angle between the leaf surface and the applied magnetic field is varied. They also vary with temperature and with the quantity of absorbed manganous ions, but they are independent of magnetic field strength. In this paper, we propose a theory to explain the origin of the spectra and a model from which the patterns can be calculated. The theory shows how heterogeneous magnetic susceptibilities and local dipolar magnetic fields in chloroplasts can shift the water-proton resonance field. The model describes a simplified leaf structure in which the chloroplasts are nonrandomly aligned with respect to the leaf surface. Model calculations are tested by comparison with experimental spectra from hawthorn leaves (Crataegus sp.).  相似文献   

3.
We have studied the background fields in the auditory evoked magnetic field responses recorded with a 37-channel SQUID magnetometer. The background fields were found to have a main contribution from the spontaneous fields, which originate in the neural activities of the brain. The spontaneous fields had strong spatial correlation across the recording sites even after averaging over 100 epochs. The spatial distribution of the spontaneous field consisted of 3 main components of single extremum pattern, dipolar pattern, and a dipolar pattern with some distortion. Computer simulations of the localization of a single dipole source of the evoked field response showed that the spontaneous background field could bring about large location errors in an unpredictable manner, as compared with the location errors caused by a spatially random Gaussian noise field.  相似文献   

4.
J F Post  B W Cook  S R Dowd  I J Lowe  C Ho 《Biochemistry》1984,23(25):6138-6141
A multiple-pulse nuclear magnetic resonance technique has been used to measure the order parameter, SFF, at 40 MHz for dimyristoylphosphatidylcholine labeled with a difluoromethylene group at the 4-, 8-, or 12-position of the sn-2-acyl chain dispersed in water in the liquid-crystalline phase. The Carr-Purcell-Meiboom-Gill multiple-pulse sequence can resolve the homonuclear dipolar coupling between the two fluorine nuclei, thus making a direct determination of the order parameter, SFF, for the F-F internuclear vector possible. Other interactions, such as the 19F chemical shift anisotropy, heteronuclear dipolar couplings, and field inhomogeneity, which normally obscure the dipolar splitting, are effectively canceled. The order parameters obtained in this work compare well with those obtained by 19F nuclear magnetic resonance line-shape analysis of the 19F-labeled phospholipids reported in the following paper [Dowd, S. R., Simplaceanu, V., & Ho, C. (1984) Biochemistry (following paper in this issue)] as well as comparable SCD order parameters, determined for the deuterium-carbon internuclear vector of deuterium-labeled phospholipids [Oldfield, E., Meadows, M., Rice, D., & Jacobs, R. (1978) Biochemistry 17, 2727-2740]. The present results clearly show the usefulness of using nuclear magnetic resonance spectroscopy to investigate lipid-lipid and protein-lipid interactions, especially for those systems containing a difluoromethylene group in the acyl chain of a phospholipid molecule.  相似文献   

5.
Although the strong 1H-1H dipolar interaction is known to result in severe homogeneous broadening of the 1H nuclear magnetic resonance (NMR) spectra of ordered systems, in the fluid phase of biological and model membranes the rapid, axially symmetric reorientation of the molecules about the local bilayer normal projects the dipolar interaction onto the motional symmetry axis. Because the linewidth then scales as (3 cos2 theta-1)/2, where theta is the angle between the local bilayer normal and the magnetic field, the dipolar broadening has been reduced to an "inhomogeneous" broadening by the rapid axial reorientation. It is then possible to obtain high resolution 1H-NMR spectra of membrane components by using magic angle spinning (MAS). Although the rapid axial reorientation effectively eliminates the homogeneous dipolar broadening, including that due to n = 0 rotational resonances, the linewidths observed in both lipids and peptides are dominated by low frequency motions. For small peptides the most likely slow motions are either a "wobble" or reorientation of the molecular diffusion axis relative to the local bilayer normal, or the reorientation of the local bilayer normal itself through surface undulations or lateral diffusion over the curved surface. These motions render the peptide 1H-NMR lines too broad to be observed at low spinning speeds. However, the linewidths due to these slow motions are very sensitive to spinning rate, so that at higher speeds the lines become readily visible.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
The order parameters as well as the rates of overall and internal motions of aggregated surfactants can be obtained from deuteron and carbon-13 nuclear relaxation experiments. The main contribution to the relaxation is generally the quadrupolar coupling (2H) or the short range dipolar interaction with protons (13C). In some cases it is convenient to derive the same information from the13C relaxation induced by long range dipolar interactions with a paramagnetic probe exchanging rapidly among the polar heads of surfactant molecules. This paper outlines the methods of interpretation of relaxation data by means of a rotational jump model of internal motions, taking into account most of the accessible conformers. The conformational and dynamical parameters are obtained from the magnetic field dependence of the longitudinal relaxation rates (micelles) or from the simultaneous fit of these rates and of the dipolar or quadrupolar splittings (liquid crystals). Some examples of application of these methods are given from recent works on single and double detailed surfactants.  相似文献   

7.
The three-dimensional structure of part of the coat protein in the filamentous bacteriophage fd is described by nuclear magnetic resonance (n.m.r.). Residues 40 to 45 are in a somewhat distorted alpha-helix. This n.m.r. approach for determining protein structure relies on the spectral manifestations of chemical shift and heteronuclear dipolar couplings in a symmetrical assembly of protein subunits oriented parallel to the applied magnetic field. The angles between individual peptide linkages and the filament axis of the virion constitute the basic source of structural information. These angles are directly related to x, y, z co-ordinates for describing the protein structure.  相似文献   

8.
The solution molecular structure and the electronic and magnetic properties of the heme pocket of the cyanomet complex of the isolated beta-chain of human adult hemoglobin, HbA, have been investigated by homonuclear 2D (1)H NMR in order to assess the extent of assignments allowed by (1)H NMR of a homo-tetrameric 65-kDa protein, to guide the future assignments of the heterotetrameric complex of HbA, and to compare the structure of the beta-chain to the crystallographically characterized complexes that contains the beta-chain. The target residues are those that exhibit significant (>|0.2| ppm) dipolar shifts, as predicted by a "preliminary" set of magnetic axes determined from a small set of easily assigned active site residues. All 104 target residues ( approximately 70% of total) were assigned by taking advantage of the temperature dependence predicted by the "preliminary" magnetic axes for the polypeptide backbone; they include all residues proposed to play a significant role in modulating the ligand affinity in the tetramer HbA. Left unassigned are the A-helix, the end of the G-helix and the beginning of the H-helix where dipolar shifts are less than |0.2| ppm. These comprehensive assignments allow the determination of a robust set of orientation and anisotropies of the paramagnetic susceptibility tensor that leads to quantitative interpretation of the dipolar shifts of the beta-chain in terms of the crystal coordinates of the beta-subunit in ligated HbA which, in turn, confirms a largely conserved molecular structure of the isolated beta-chain relative to that in the intact R-state HbA. The major magnetic axis, which is correlated with the tilt of the Fe-CN unit, is tilted approximately 10 degrees from the heme normal so that the Fe-CN unit is tilted toward the beta-meso-H in a fashion remarkably similar to the Fe-CO tilt in the beta-subunit of HbCO. It is concluded that a set of "preliminary" magnetic axes and the use of variable temperature 2D NMR spectra are crucial to effective assignments in the tetrameric cyanomet beta-chain and that this approach should be similarly effective in HbA.  相似文献   

9.
Residual dipolar couplings arise from small degrees of alignment of molecules in a magnetic field. Most biomolecules lack sufficient intrinsic magnetic susceptibility anisotropies for practical purposes; however, alignment can be achieved using dilute aqueous phospholipid mixtures, colloidal suspensions of rod-shaped viruses, complex phases of surfactant systems and strained gels. The stability of the liquid crystalline phases varies with respect to temperature range, pH variation and time and is critically dependent on sample composition and experimental conditions. The magnitude of the residual dipolar couplings depends upon the degree of ordering and allows the determination of the corresponding inter-nuclear vectors with respect to the molecule's alignment frame. Inclusion of dipolar constraints into NMR structure calculations leads to improved precision and accuracy of the resulting structures, especially in cases where the information content provided by traditional NOE constraints is limited. In addition, rapid evaluation of backbone protein folds and determination of the relative orientations of individual components in multi-molecular complexes have become feasible. Dipolar coupling based strategies may well emerge as the most critical developments, in establishing NMR as a valuable and competitive methodology in the structural genomics initiative.  相似文献   

10.
Helical perturbations of the tokamak magnetic field can give rise to magnetic islands in the vicinity of the rational magnetic surfaces at which the pitch of the magnetic field lines coincides with that of the perturbation. The widely known relationship between the magnetic island width and the perturbation amplitude is valid under the assumptions that the island width is small in comparison to the radius of the rational surface and that the perturbation amplitude is constant in the radial direction. The latter assumption indicates that the island width is small in comparison to the radial size of the region where the perturbation current is localized. The calculations carried out for four model magnetic field configurations show that the geometry of the magnetic islands depends on the extent to which the perturbation current is localize and that the width of the magnetic islands is smaller than that calculated from the familiar relationship. The larger the perturbation amplitude, the greater this difference: it may be as large as 25% for the strong perturbations arising during disruptions. The calculations are based on the solution of the geometric problem of constructing the lines of the magnetic field determined by the given distributions of the initial current and perturbation current; the equilibrium equation is not considered. The question of the direction of the perturbation current within the island relative to the direction of the initial unperturbed current is discussed. The perturbation current flowing in an island is directed opposite to the initial current with a radially decreasing density; for this reason, such an island can naturally be called a “negative” island. Together with the formation of negative islands, the formation of “positive” ones is also considered. The latter are shown to form under the following conditions: the perturbation current density should be higher than the density of the current that produces the unperturbed field and the perturbation current itself should be localized in a sufficiently narrow radial layer. The positive islands are smaller in size than negative ones.  相似文献   

11.
The solution electronic and molecular structure for the heme pocket of the cyanomet complex of the isolated alpha-chain of human adult hemoglobin (HbA) has been investigated by homonuclear two-dimensional 1H NMR in order to establish an assignment protocol for the dimeric chain that will guide similar assignments in the intact, heterotetrameric HbA complex, and to compare the structures of the alpha-chain with its subunit in HbA. The target residues are those that exhibit significant (>0.2 ppm) dipolar shifts, as predicted by a "preliminary" set of magnetic axes determined from a small set of easily assigned active site residues. All 97 target residues (approximately 70% of total) were assigned by taking advantage of the temperature dependence predicted by the "preliminary" magnetic axes for the polypeptide backbone; they include all residues proposed to play a significant role in modulating the ligand affinity in the tetramer HbA. Left unassigned are the A-helix, the end of the G-helix and the beginning of the H-helix where dipolar shifts are less than 0.2 ppm. The complete assignments allow the determination of a robust set of orientation and anisotropies of the paramagnetic susceptibility tensor that leads to quantitative interpretation of the dipolar shifts of the alpha-chain in terms of the crystal coordinates of the alpha-subunit in ligated HbA which, in turn, confirms a largely conserved molecular structure of the isolated alpha-chain relative to that in the intact HbA. The major magnetic axis, which is correlated with the tilt of the Fe-CN unit, is tilted approximately 10 degrees from the heme normal so that the Fe-CN unit is tilted toward the beta-meso-H in a fashion remarkably similar to the Fe-CO tilt in HbACO. It is concluded that a set of "preliminary" magnetic axes and the use of variable temperature two-dimensional NMR spectra are crucial to effective assignments in the cyanomet alpha-chain and that this approach should be similarly effective in HbA.  相似文献   

12.
The influence of constant magnetic field, power 7 T, and ultrasound, frequency 2, 4 and 8 MHz, on gametes, fertization, embryos and larvae of the sea urchin was studied. It was shown that magnetic field breaks the process of the gamete fusion but does not influence gametes, embryos, and larvae. Ultrasound impairs the motility of spermatozoa and larvae, prevents the fertilization, and breaks the embryonic development. It is assumed that the effect of the magnetic field is connected with the response of the cortical cytoskeleton, which consists of bundles of actin microfilaments. The rearrangement of the cortical cytoskeleton occurs during the first 20 minutes after the contact of sperm with the egg. Also there is effect of magnetic fields on calcium ions, which are liberated during the first seconds after gamete contact. The effect of the ultrasound is explained by a small increase in water temperature and cavitation process, which break celluar structures.  相似文献   

13.
Experimental magnetic susceptibility tensors are reported for eight haems c with bis-His coordination. These data, obtained by fitting the dipolar shifts of backbone protons in the tetrahaem cytochromes c 3 from Desulfovibrio vulgaris and D. gigas, are analysed together with published values for other haem proteins. The x and y axes are found to rotate in the opposite sense to the axial ligands and are also counter-rotated with respect to the frontier molecular orbitals of the haem. The magnetic z-axis is close to the normal to the haem plane in each case. The magnitudes of the magnetic anisotropies are used to derive crystal field parameters and the rhombic splitting, V, is correlated with the dihedral angle between the axial ligands. Hence, it is apparent that the axial ligands are the dominant factor in determining the variation in magnetic properties between haems, and it is confirmed that “high g max” EPR signals are a reliable indicator of near-perpendicular ligands. These results are in full agreement with the analysis of non-Curie effects and electronic structure in the His-Met coordinated cytochromes c and c 551. Collectively, they show that the orientations of axial ligands to the haem may be estimated from single-crystal EPR data, from 13C NMR shifts of the haem substituents, or from NMR dipolar shifts of the polypeptide. Received: 3 September 1999 / Accepted: 10 December 1999  相似文献   

14.
Young domestic chicks of two strains, ISA brown layers and White Leghorn X Australorps, were trained to associate a magnetic anomaly with food. This was done by feeding them in their housing boxes from a dish placed above a small coil that produced a magnetic anomaly roughly six times as strong as the local geomagnetic field. Unrewarded tests began on day 9 after hatching. In a square arena, two corresponding coils were placed underneath two opposite corners. One coil, the control coil, was double-wrapped producing no net magnetic field, while the other in the opposite corner produced a local magnetic anomaly similar to that experienced during feeding. The chicks favoured the corner with the anomaly from day 10 after hatching onward. Both strains of chickens showed this preference, indicating that they could sense the local changes in the magnetic field.  相似文献   

15.
Behavior and electrophysiological studies have demonstrateda sensitivity to characteristics of the Geomagnetic field thatcan be used for navigation, both for direction finding (compass)and position finding (map). The avian magnetic compass receptorappears to be a light-dependent, wavelength-sensitive systemthat functions as a polarity compass (i.e., it distinguishespoleward from equatorward rather than north from south) andis relatively insensitive to changes in magnetic field intensity.The receptor is within the retina and is based on one or morephotopigments, perhaps cryptochromes. A second receptor systemappears to be based on magnetite and might serve to transducelocation information independent of the compass system. Thisreceptor is associated with the ophthalmic branch of the trigeminalnerve and is sensitive to very small (<50 nanotesla) changesin the intensity of the magnetic field. In neither case hasa neuron that responded to changes in the magnetic field beentraced to a structure that can be identified to be a receptor.Almost nothing is known about how magnetic information is processedwithin the brain or how it is combined with other sensory informationand used for navigation. These remain areas of future research.  相似文献   

16.
Residual dipolar couplings (RDCs) and pseudocontact shifts are experimentally accessible properties in nuclear magnetic resonance that are related to structural parameters and to the magnetic susceptibility anisotropy. We have determined RDCs due to field-induced orientation of oxidized-K79A and reduced cytochrome c at pH 7.0 and oxidized-K79A cytochrome c at pH 11.1 through measurements of amide (15)N-(1)H (1)J couplings at 800 and 500 MHz. The pH 7.0 RDCs for Fe(III)- and Fe(II)-cytochrome c together with available nuclear Overhauser effects were used to recalculate solution structures that were consistent with both sets of constraints. Molecular magnetic susceptibility anisotropy values were calculated for both redox states of the protein. By subtracting the residual dipolar couplings (RDCs) of the reduced form from those of the oxidized form measured at the same magnetic field (800 MHz), we found the RDC contribution of the paramagnetic metal ion in the oxidized protein. The magnetic susceptibility anisotropy, which was calculated from the structure, was found to be the same as that of the paramagnetic metal ion obtained independently from pseudocontact shifts, thereby indicating that the elements of secondary structure either are rigid or display the same mobility in both oxidation states. The residual dipolar coupling values of the alkaline-K79A form are small with respect to those of oxidized native cytochrome, whereas the pseudocontact shifts are essentially of the same magnitude, indicating local mobility. Importantly, this is the first time that mobility has been found through comparison of RDCs with pseudocontact shifts.  相似文献   

17.
It is not yet understood how migratory birds sense the Earth's magnetic field as a source of compass information. One suggestion is that the magnetoreceptor involves a photochemical reaction whose product yields are sensitive to external magnetic fields. Specifically, a flavin-tryptophan radical pair is supposedly formed by photoinduced sequential electron transfer along a chain of three tryptophan residues in a cryptochrome flavoprotein immobilized in the retina. The electron Zeeman interaction with the Earth's magnetic field (∼50 μT), modulated by anisotropic magnetic interactions within the radicals, causes the product yields to depend on the orientation of the receptor. According to well-established theory, the radicals would need to be separated by >3.5 nm in order that interradical spin-spin interactions are weak enough to permit a ∼50 μT field to have a significant effect. Using quantum mechanical simulations, it is shown here that substantial changes in product yields can nevertheless be expected at the much smaller separation of 2.0 ± 0.2 nm where the effects of exchange and dipolar interactions partially cancel. The terminal flavin-tryptophan radical pair in cryptochrome has a separation of ∼1.9 nm and is thus ideally placed to act as a magnetoreceptor for the compass mechanism.  相似文献   

18.
Local synthesis of nested 3D toroidal magnetic surfaces is carried out on the basis of the general theory of surfaces by using magnetic coordinates (generally unknown a priori). An equilibrium magnetic surface is calculated by specifying two functions on the surface (the absolute value of the magnetic field and the distance to the nearest magnetic surface) and three parameters (the rotational transform, pressure gradient, and poloidal current). The choice of the parameters is restricted by the requirement that the surface should be closed toroidally. A method of synthesis of a closed magnetic surface is proposed when two functions—the absolute value of the magnetic field and the major radius—are specified. A set of harmonics of a new type of poloidally preudosymmetric configuration (a toroidal mirror with a large mirror ratio and small rotational transform) is obtained.  相似文献   

19.
We consider the heating of a metal stent in an alternating magnetic field from an induction heating furnace. An approximate theoretical analysis is conducted to estimate the magnetic field strength needed to produce substantial temperature increases. Experiments of stent heating in industrial furnaces are reported, which confirm the model. The results show that magnetic fields inside inductance furnaces are capable of significantly heating stents. However, the fields fall off very quickly with distance and in most locations outside the heating coil, field levels are far too small to produce significant heating. The ANSI/IEEE C95.1-1992 limits for human exposure to alternating magnetic fields provide adequate protection against potential excessive heating of the stents.  相似文献   

20.
Kartashov IuA  Popov IV 《Biofizika》2008,53(2):344-350
It is shown that, under the influence of magnetic field, rotational moments of the same direction appear for all charged particles having the same sign of their charge and freely moving in a thermal fluctuational electromagnetic field in a diamagnetic condensed matter. The magnitude of this rotational moment is proportional to the thermal energy kT and can be substantially increased when the conditions for cyclotron resonance are satisfied. The moments of positively charged particles are directed oppositely to the vector of the magnetic field induction. The so-called "kT problem" has been solved. The evidence for magnetosensitivity is the appearance of rotational moments acting on the particles from the thermal field in the presence of an external magnetic field as a small factor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号