首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 358 毫秒
1.
1. Beta-fibrinogenase was isolated from the venom of Agkistrodon p. piscivorus by column chromatography on Sephadex G-100, DEAE-Sephacel and by chromatofocusing, with a yield of 2.5 mg of purified enzyme from 1 g of crude venom. 2. The enzyme was homogeneous by SDS and non-SDS disc electrophoresis on polyacrylamide gel at pH 8.3. 3. Beta-fibrinogenase is a glycoprotein possessing both TAME hydrolase and kinin-releasing activities. 4. A mol. wt of approximately 33,500 and an isoelectric point 4.5 was determined. 5. The enzyme is stable to heat treatment and to a pH range of 2-10. 6. Beta-fibrinogenase activity is inactivated by DFP, suggesting that serine is involved in the enzymatic activity. 7. The Michaelis constant (Km) of this enzyme for TAME and inhibition constant (Ki) for DFP were found to be 7.04 X 10(-3) and 4.13 X 10(-3) M, respectively.  相似文献   

2.
Purification and properties of pig liver kynureninase.   总被引:1,自引:0,他引:1  
Kynureninase [L-kynurenine hydrolase, EC 3.7.1.3] was purified from pig liver by a procedure including DEAE-cellulose chromatography, hydroxyapatite chromatography, ammonium sulfate fractionation, DEAE-Bio Gel chromatography, Sephacryl S-200 gel filtration, kynurenine-Sepharose affinity chromatography, and Sephadex G-200 gel filtration. The enzyme was found to be homogeneous by the criterion of disc-gel electrophoresis. The enzyme has a molecular weight of about 100,000 and exhibits absorption maxima at 280 and 420 nm. The optimum pH and the isoelectric point of the enzyme are 8.5 and 5.0, respectively. The Michaelis constants were determined to be as follows: L-kynurenine, 7.7 X 10(-4) M; L-3-hydroxykynurenine, 1.3 X 10(-5) M; and pyridoxal 5'-phosphate, 1.8 X 10(-6) M. L-3-Hydroxykynurenine is hydrolyzed more rapidly than L-kynurenine; the liver enzyme can be regarded as a 3-hydroxy-kynureninase.  相似文献   

3.
Phosphoglycerate mutase has been purified from methanol-grown Hyphomicrobium X and Pseudomonas AMI by acid precipitation, heat treatment, ammonium sulphate fractionation, Sephadex G-50 gel filtration and DEAE-cellulose column chromatography. The purification attained using the Hyphomicrobium X extract was 72-fold, and using the Pseudomonas AMI extract, 140-fold. The enzyme purity, as shown by analytical polyacrylamide gel electrophoresis, was 50% from Hyphomicrobium X and 40% from Pseudomonas AMI. The enzyme activity was associated with one band. The purified preparations did not contain detectable amounts of phosphoglycerate kinase, phosphopyruvate hydratase, phosphoglycerate dehydrogenase or glycerate kinase activity. The molecular weight of the enzymic preparation was 32000 +/- 3000. The enzyme from both organisms was stable at low temperatures and, in the presence of 2,3-diphosphoglyceric acid, could withstand exposure to high temperatures. The enzyme from Pseudomonas AMI has a broad pH optimum at 7-0 to 7-6 whilst the enzyme from Hyphomicrobium X has an optimal activity at pH 7-3. The cofactor 2,3-diphosphoglyceric acid was required for maximum enzyme activity and high concentrations of 2-phosphoglyceric acid were inhibitory. The Km values for the Hyphomicrobium X enzyme were: 3-phosphoglyceric acid, 6-0 X 10(-3) M: 2-phosphoglyceric acid, 6-9 X 10(-4) M; 2,3-diphosphoglyceric acid, 8-0 X 10(-6) M; and for the Pseudomonas AMI ENzyme: 3-4 X 10(-3) M, 3-7 X 10(-4) M and 10 X 10(-6) M respectively. The equilibrium constant for the reaction was 11-3 +/- 2-5 in the direction of 2-phosphoglyceric acid to 3-phosphoglyceric acid and 0-09 +/- 0-02 in the reverse direction. The standard free energy for the reaction proceeding from 2-phosphoglyceric acid to 3-phosphoglyceric acid was -5-84 kJ mol(-1) and in the reverse direction +5-81 kJ mol(-1).  相似文献   

4.
P Izzo  R Gantt 《Biochemistry》1977,16(16):3576-3581
An N2-guanine RNA methyltransferase has been purified 1000-fold from chick embryo homogenates by phosphocellulose chromatography followed by chromatography on S-adenosylhomocystein-Sepharose. The enzyme was shown to methylate the G10 position of Escherichia coli B tRNAPhe and has a Km of 3X10(-7) M for tRNAPhe and 1.38 X 10(-6) M for S-adenosylmethionine. The molecular weight was estimated to be 77 000 by gel filtration and the pH optimum was 8.0 to 8.5. Magnesium ion was not required for activity but it stimulated the rate of methylation 1.5-fold with an optimum at 12 mM. Ammonium ion stimulated activity about twofold with an optimum at about 83 mM. Sodium and potassium ions above 0.1 M were inhibitory.  相似文献   

5.
A repressible alkaline phosphatase has been isolated from the extreme bacterial thermophile, Thermus aquaticus. The enzyme can be derepressed more than 1,000-fold by starving the cells for phosphate. In derepressed cells, nearly 6% of the total protein in a cell-free enzyme preparation is alkaline phosphatase. The enzyme was purified to homogeneity as judged by disc acrylamide electrophoresis and sodium dodecyl sulfate electrophoresis. By sucrose gradient centrifugation it was established that the enzyme has an approximate molecular weight of 143,000 and consists of three subunits, each with a molecular weight of 51,000. Tris buffer stimulates the activity of the enzyme, which has a pH optimum of 9.2. The enzyme has a broad temperature range with an optimum of 75-80 degrees. The enzyme catalyzes the hydrolysis of a wide variety of phosphorylated compounds as do many of the mesophilic alkaline phosphatases. The Michaelis constant(Km) for the enzyme is 8.0 X 10(-4) M. Amino acid analysis of the protein revealed little in the amino acid composition to separate it from other mesophilic enzymes which have been previously studied.  相似文献   

6.
Twenty-two synthetic proteinase inhibitors were tested for their inhibitory properties towards human acrosin. p-Nitrophenyl-p1-guanidino benzoate (NPGB) was the most effective (K1 value of 1-5 X 10(-8) M), producing a non-competitive type of inhibition in contrast to all other inhibitors which showed a competitive type of inhibition. The Michaelis constant for human acrosin on BAEE at pH 8-1 was calculated to be 4-25 X 10(-5) M.  相似文献   

7.
Adult female mice were superovulated with PMSG followed by HCG and 140 blastocysts and 69 morulae were recovered from 24 mice. On the basis of the response, mice were divided into six groups; non responders, 1-5, 6-10, 11-20, 21-30 and >30 embryos. The ovaries of the animals were pooled group wise, homogenized in PBS (pH 7.4) and after centrifugation for 10-15 minutes, the supernatant was analyzed for the enzymes, guanine oxaloacetate transaminase (GOT), guanine pymvate transaminase (GPT), acid phosphatases (ACP) and alkaline phosphatases (AKP). Acid and alkaline phosphatase activities did not show any variation in relation to response to superovulation but GOT and GPT showed significantly increased activity in response to induction of superovulation. A statistically significant positive correlation was found between GOT and GPT activities and the superovulatory response in mice.  相似文献   

8.
A hemorrhagic toxin with lethal and arginine ester hydrolytic activities was isolated from Heloderma horridum (beaded lizard) venom by Sephadex G-75, DEAE-Sephacel, and Q-Sepharose column chromatography. The hemorrhagic toxin was shown to be homogeneous as demonstrated by a single band on acrylamide gel electrophoresis and immunodiffusion. Its molecular weight is approximately 31,000 with an isoelectric point of 3.9. Hemorrhagic, lethal, and benzoyl-L-arginine ethyl ester hydrolytic activities of this preparation were inhibited by diisopropyl fluorophosphate (DFP), N-bromosuccinimide, and beta-mercaptoethanol, suggesting that serine, tryptophan, and disulfide bonds are involved in these activities. Also there was an increase in creatine kinase activity in mice serum which is an indicator that the toxin is involved in muscle damage. This protein was stable to heat and pH ranges between 2 and 11. The Michaelis constant (Km), for benzoyl-L-arginine ethyl ester, and inhibition constant (Ki), for DFP, were found to be 6.9 X 10(-3) and 1.93 X 10(-4) M, respectively.  相似文献   

9.
Ubiquitin, a unique protein with esterase and carbonic anhydrase activity, has been found to have also a p-nitrophenyl phosphatase activity. This phosphomonoesterase activity of ubiquitin has an acidic pH optimum; its true substrate appears to be the phosphomonoanion, with a Km of 1.8 X 10(-3) M. It is competitively inhibited by the typical acid phosphatase inhibitors, arsenate (Ki = 1.3 X 10(-3) M), molybdate (Ki = 1.2 X 10(-6) M), and phosphate (Ki = 1.4 X 10(-3) M). These inhibitors have no effect on the CO2 hydration and p-nitrophenyl acetate esterase activities of the ubiquitin. Acetazolamide slightly inhibited the p-nitrophenyl phosphatase activity.  相似文献   

10.
Lysine-ketoglutarate reductase (saccharopine dehydrogenase (NADP+, lysine-forming) EC 1.5.1.8) from human liver has been partially purified and characterized. A spectrophotometric assay is described. The Michaelis constants have been determined for lysine (1.5-10-3 M), alpha-ketoglutarate (1-10-3 M) and NADPH (8-10-5 M). The pH optimum is 7.8. The enzyme is product inhibited. The specificity of the enzyme, response to inhibitors, pH and thermal stability are reported. Lysine-ketoglutarate reductase is present in high concentration in liver and heart, to a lesser degree in kidney and skin and in trace amounts in several other tissues. Saccharopine dehydrogenase (saccharopine dehydrogenase (NAD+, L-glutamate-forming) EC 1.5.1.9) was demonstrable only in liver and kidney. Lysine-ketoglutarate reductase reacts effectively with delta-hydroxylysine.  相似文献   

11.
Protease II from Escherichia coli. Purification and characterization.   总被引:5,自引:0,他引:5  
We have previously demonstrated the existence of two types of endopeptidase in Escherichia coli. A purification procedure is described for one of these, designated protease II. It has been purified about 13,500-fold with a recovery of 24%. The isolated enzyme appears homogeneous by electrophoresis and gel filtration. Its molecular weight is estimated by three different methods to be about 58,000. Its optimal pH is around 8. Protease II activity is unaffected by chelating agents and sulfhydryl reagents. Amidase and proteolytic activities are stimulated by calcium ion, which decreases the enzyme stability. Like pancreatic trypsin, this endopeptidase catalyses the hydrolysis of alpha-amino-substituted lysine and arginine esters. It appears distinct from the previously isolated protease I, which is a chymotrypsin-like enzyme. The apparent Michaelis constant for hydrolysis of N-benzoyl-L-arginine ethyl ester is 4.7 X 10(-4) M. The esterase activity is inhibited by diisopryopylphosphorofluoridate (Ki(app) equals 2.7 X 10(-3) M) and tosyl lysine chloromethyl ketone (Ki(app) equals 1.8 X 10(-5) M), indicating that serine and histidine residues may be present in the active site. However, protease II is insensitive to phenylmethanesulfonyl fluoride and several natural trypsin inhibitors. Its amidase and esterase activities are competitively inhibited by free arginine and aromatic amidines. The proteolytic activity measured on axocasein is very low. In contrast to trypsin, protease II is without effect on native beta-galactosidase. It easily degrades aspartokinase I and III. Nevertheless both enzymes are resistant to proteolysis in the presence of their respective allosteric effectors. These results provide further evidence that such differences in protease susceptibility can be related to the conformational state of the substrate. The possible implication of structural changes in the mechanism of preferential proteolysis in vivo, is discussed.  相似文献   

12.
Phosphodiesterase was isolated from the venom of Trimeresurus mucrosquamatus from Taiwan using gel filtration on a Sephadex G-100 column, followed by anion or cation exchange chromatography. Phosphodiesterase was homogeneous as established by a single band on acrylamide gel electrophoresis and immunodiffusion. Phosphodiesterase activity was inhibited by ethylenediamine tetraacetic acid (EDTA), o-phenanthroline, thioglycolic acid or p-chloromercuribenzoate (PCMB) but not by soybean trypsin inhibitor (SBTI) or benzamidine. The molecular weight of this enzyme was determined to be approximately 140,000 and the isoelectric point was found to be pH 7.4 by isoelectric focusing with carrier ampholyte. The Michaelis constant (Km) of this enzyme for p-nitrophenyl thymidine-5'-phosphate and inhibition constant (Ki) for PCMB were found to be 5.6 X 10(-3) and 7.6 X 10(-4) M, respectively.  相似文献   

13.
W. Huber  N. Sankhla 《Oecologia》1973,13(3):271-277
Summary The separate and combined effects of sodium chloride and gibberellin (GA) on growth and the activities of alanine aminotransferase (GPT), aspartate aminotransferase (GOT) and glutamate dehydrogenase (GLDH) have been studied in the aerial parts of Pennisetum typhoides seedlings. Salt concentrations higher than 8.55×103 M inhibited growth and reduced GLDH activity, but strongly stimulated the activity of GPT and, to a lesser extent, that of GOT. GA alone, on the other hand, stimulated growth but did not affect activity of any of the enzymes tested. In combination with salt, however, GA tended to counteract the effect of salt on both growth and enzyme activity. The possible significance of the results in explaining adaptation of plants under conditions of stress has been discussed.  相似文献   

14.
Using ammonium sulfate precipitation, gel filtration, and affinity chromatography, inosine monophosphate (IMP) oxidoreductase (EC 1.2.1.14) was isolated from the soluble proteins of the plant cell fraction of nitrogen-fixing nodules of cowpea (Vigna unguiculata L. Walp). The enzyme, purified more than 140-fold with a yield of 11%, was stabilized with glycerol and required a sulfydryl-reducing agent for maximum activity. Gel filtration indicated a molecular weight of 200,000, and sodium dodecyl sulfate-gel electrophoresis a single subunit of 50,000 Da. The final specific activity ranged from 1.1 to 1.5 mumol min-1 mg protein-1. The enzyme had an alkaline pH optimum and showed a high affinity for IMP (Km = 9.1 X 10(-6) M at pH 8.8 and NAD levels above 0.25 mM) and NAD (Km = 18-35 X 10(-6) M at pH 8.8). NAD was the preferred coenzyme, with NADP reduction less than 10% of that with NAD, while molecular oxygen did not serve as an electron acceptor. Intermediates of ureide metabolism (allantoin, allantoic acid, uric acid, inosine, xanthosine, and XMP) did not affect the enzyme, while AMP, GMP, and NADH were inhibitors. GMP inhibition was competitive with a Ki = 60 X 10(-6) M. The purified enzyme was activated by K+ (Km = 1.6 X 10(-3) M) but not by NH+4. The K+ activation was competitively inhibited by Mg2+. The significance of the properties of IMP oxidoreductase for regulation of ureide biosynthesis in legume root nodules is discussed.  相似文献   

15.
The properties of adenylate kinase in 2 ADP in equilibrium ATP + AMP reaction have been studied. The dependence of the enzyme activity on medium pH, protein concentration, substrates, Mg++ ions, AMP, adenine and adenosine has been also investigated. pH optimum is found to be 8.5 for forward reaction and 8-9--for the reverse one. The Michaelis constants are as follows: for ADP--1.17-10(-4) M, for ATP--3.33-10(-4) M at 24 degrees C, in 50 mM tris-HCl pH 7.6. The optimal ratio, Mg++ ions/substrates (ADP, ATP + AMP), is 1:2. The chelates of adenine nucleotides with Mg++ ions are proved to be "true" reaction substrates. Unlike adenine and adenosine, the product of AMP reaction inhibits adenylate kinase activity. It is concluded that the properties of adenylate kinase in plants are similar to those of animals and humans (moikinase).  相似文献   

16.
Aminotransferases (GOT and GPT) activities in the hemolymph of Bradybaena similaris under experimental condition of starvation were studied. At the 10th day of starvation, GOT activity was 416.6% higher than that observed in the fed snails, being reduced and ranging values near to that shown by the control group onwards. GPT activity only varied significantly at the day-30 of starvation. The results were discussed.  相似文献   

17.
A new method for isolation of leukocyte serine proteinases has been developed. Elastase (EC 3.4.21.37) and cathepsin G (EC 3.4.21.20) have been isolated from dog neutrophils and purified to homogeneous state. The results of inhibitor analysis indicate that the enzymes belong to the group of serine proteinases. Some physical and chemical characteristics of the purified enzymes have been determined. The molecular weights of the enzymes are 24.5-26 kD for the elastase and 23.5-25.5 kD for the cathepsin G. The cathepsin G is a glycoprotein, while the elastase molecule lacks carbohydrate components. The cathepsin G exhibits a broad pH optimum of catalytic activity in the range of 7.0-9.0; the pH optimum for the elastase is 8.0-8.5. The Michaelis constant of the elastase for N-t-Boc-L-alanine p-nitrophenyl ester is 0.10 mM; the Michaelis constant of the cathepsin G for N-benzoyl-L-tyrosine ethyl ester is 0.42 mM.  相似文献   

18.
A cAMP-dependent protein kinase has been isolated from rabbit muscle and purified. The affinity constant of the enzyme for the nucleotide is Ka = 9.3 X 10(-9) M, with a Vmax = 0.013 X 10(12) moles bound cAMP/1 microgram protein. The influence exerted by different factors is studied: a) Inhibitor (I) of kinase activity: increases the binding capacity for cAMP, by percentages which depend on the amount of I. In the presence of inhibitor (120 microgram/100 microliter) the affinity constant is Ka = 4.1 X 10(-9) M, without change in Vmax. b) Effect of pH: it has a complex influence over binding, being also regulated by cAMP concentration. The positive effect on binding of ionic and bovine serum albumin concentrations, and the negative effect of enzyme preincubation before additions of (H3) cAMP, have also been studied. The importance of these effectors to obtain a high degree of sensitivity in the binding protein method has been assertained.  相似文献   

19.
Synthetic pyrethroids are considered as possible sub-stitutesfor some organophosphate carbamates or organochlo-rine insecticides,and have been used extensivelyfor morethantwo decades[1].Pyrethroids are preferred over otherinsecticides because of their easy degradation into non-toxic or less toxic metabolites under natural conditions.Consequently,there has recently beena dramatic increaseinthe use of pyrethroid pesticides to control insect pests.However,synthetic pyrethroids were also reported …  相似文献   

20.
P A Mueggler  R G Wolfe 《Biochemistry》1978,17(22):4615-4620
At pH 8.0 in 0.05 M Tris-acetate buffer at 25 degrees C, homogeneous supernatant malate dehydrogenase exhibits substrate activation by L-malate. The turnover number, Michaelis constant for L-malate, and Michaelis constant for NAD are: 0.46 X 10(4) min(-1), 0.036 mM, and 0.14 mM, respectively, for nonactivated enzyme and 1.1 X 10(4) min(-1), 0.2mM, and 0.047 mM for the same series of constants in activated enzyme. Nonactivating behavior is observed at concentrations between 0.02 and 0.15 mM L-malate and activating behavior is observed between 0.15 and 0.5 mM L-malate. L-Malate activation is compared with similar activation of mitochondrial malate dehydrogenase. While it is not possible to exclude unequivocally all mechanisms, the data seem to be consistent with the occurrence of a fundamentally ordered bi bi mechanism, possibly involving activation through the allosteric binding of L-malate. It is concluded that the data are consistent with a form of the "reciprocating compulsory order mechanism" in which nonactivated enzyme reflects catalysis by one subunit and activated catalysis expresses the coordinated activity of two subunits. The allosteric interaction and the "reciprocating mechanism/ are not mutually exclusive.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号