首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
2.
Claudin proteins belong to a large family of transmembrane proteins essential to the formation and maintenance of tight junctions (TJs). In ovarian cancer, TJ protein claudin-4 is frequently overexpressed and may have roles in survival and invasion, but the molecular mechanisms underlying its regulation are poorly understood. In this report, we show that claudin-4 can be phosphorylated by protein kinase C (PKC) at Thr189 and Ser194 in ovarian cancer cells and overexpression of a claudin-4 mutant protein mimicking the phosphorylated state results in the disruption of the barrier function. Furthermore, upon phorbol ester-mediated PKC activation of OVCA433 cells, TJ strength is decreased and claudin-4 localization is altered. Analyses using PKC inhibitors and siRNA suggest that PKCepsilon, an isoform typically expressed in ovarian cancer cells, may be important in the TPA-mediated claudin-4 phosphorylation and weakening of the TJs. Furthermore, immunofluorescence studies showed that claudin-4 and PKCepsilon are co-localized at the TJs in these cells. The modulation of claudin-4 activity by PKCepsilon may not only provide a mechanism for disrupting TJ function in ovarian cancer, but may also be important in the regulation of TJ function in normal epithelial cells.  相似文献   

3.
In salivary glands, primary saliva is produced by acini and is modified by the reabsorption and secretion of ions in the ducts. Thus, the permeability of intercellular junctions in the ducts is considered to be lower than in the acini. We have examined the relationship between the expressed claudin isotypes and the barrier functions of tight junctions in a submandibular gland epithelial cell line, SMIE. SMIE cells were originally derived from rat submandibular duct cells, but their barrier functions are not as efficient as those of Madin-Darby canine kidney cells. Large molecules, such as 70-kDa dextran, diffuse across the monolayers, although E-cadherin and occludin, adherens junction and tight junction proteins, respectively, are expressed in SMIE cells. Claudin-3 protein has also been detected, but the expression level of claudin-3 mRNA is much lower than in the original submandibular glands. Other claudins including claudin-4 (originally expressed in the duct cells) have not been detected. Because of the limited expression of claudins, SMIE cells are suitable for studying the role(s) of claudins. To examine the function of claudin-4 in submandibular glands, we have overexpressed green fluorescence protein (GFP)-fused claudin-4 in SMIE cells. Cells that express GFP-fused claudin-4 have a higher transepithelial electrical resistance and a lower permeability of 70-kDa dextran, although the expression levels of occludin and claudin-3 are hardly affected. Therefore, claudin-4 plays a role in the regulation of the barrier function of tight junctions in submandibular glands. This work was supported by Grants-in-Aid for scientific research from the Ministry of Education, Science, Culture, Sports, and Technology of Japan (16591868), by a Nihon University Multidisciplinary Research Grant for 2006 and 2007, and by a Grant-in-Aid for a 2003 Multidisciplinary Research Project from MEXT.  相似文献   

4.
Claudins upregulation in human colorectal cancer   总被引:12,自引:0,他引:12  
In colorectal cancer tight junction molecular and morphological alterations are poorly understood. In this study, adenocarcinoma tissues and their paired normal mucosa (n = 12) were analyzed for tight junction alterations molecular. The expression of claudin-1, -3 and -4 was upregulated 5.7-, 1.5- and 2.4-fold, respectively, in colorectal tumor tissues in comparison to the normal ones. Although tight junction remains in the cancerous epithelium, its barrier function was altered. Despite claudins overexpression, paracellular permeability to ruthenium red was increased and a significant disorganization of tight junction strands was observed in freeze fracture replicas. Whereas the functional significance of claudin overexpression in colorectal cancer is unclear, these proteins can become potential markers and targets in colorectal cancer.  相似文献   

5.
Gap junctions are considered to play a crucial role in differentiation of epithelial cells and to be associated with tight junction proteins. In this study, to investigate the role of gap junctions in regulation of the barrier function and fence function on the tight junctions, we introduced the Cx26 gene into human airway epithelial cell line Clau-3 and used a disruption model of tight junctions employing the Na(+)/K(+)-ATPase inhibitor ouabain. In parental Calu-3 cells, gap junction proteins Cx32 and Cx43, but not Cx26, and tight junction proteins occludin, JAM-1, ZO-1, claudin-1, -2, -3, -4, -5, -6, -7, -8, -9, and -14 were detected by RT-PCR. The barrier function and fence function of tight junctions were well maintained, whereas the GJIC was low level. Treatment with ouabain caused disruption of the barrier function and fence function of tight junctions together with down-regulation of occludin, JAM-1, claudin-2, and -4 and up-regulation of ZO-1 and claudin-14. In Cx26 transfectants, Cx26 protein was detected by Western blotting and immunocytochemistry, and many gap junction plaques were observed with well-developed tight junction strands. Expression of claudin-14 was significantly increased in Cx26 transfectants compared to parental cells, and in some cells, Cx26 was co-localized with claudin-14. Interestingly, transfection with Cx26 prevented disruption of both functions of tight junctions by treatment with ouabain without changes in the tight junction proteins. Pretreatment with the GJIC blockers 18beta-glycyrrhetinic acid and oleamide did not affect the changes induced by Cx26 transfection. These results suggest that Cx26 expression, but not the mediated intercellular communication, may regulate tight junction barrier and fence functions in human airway epithelial cell line Calu-3.  相似文献   

6.
The tight junction (TJ) and its adhesion molecules, claudins, are responsible for the barrier function of simple epithelia, but TJs have not been thought to play an important role in the barrier function of mammalian stratified epithelia, including the epidermis. Here we generated claudin-1-deficient mice and found that the animals died within 1 d of birth with wrinkled skin. Dehydration assay and transepidermal water loss measurements revealed that in these mice the epidermal barrier was severely affected, although the layered organization of keratinocytes appeared to be normal. These unexpected findings prompted us to reexamine TJs in the epidermis of wild-type mice. Close inspection by immunofluorescence microscopy with an antioccludin monoclonal antibody, a TJ-specific marker, identified continuous TJs in the stratum granulosum, where claudin-1 and -4 were concentrated. The occurrence of TJs was also confirmed by ultrathin section EM. In claudin-1-deficient mice, claudin-1 appeared to have simply been removed from these TJs, leaving occludin-positive (and also claudin-4-positive) TJs. Interestingly, in the wild-type epidermis these occludin-positive TJs efficiently prevented the diffusion of subcutaneously injected tracer (approximately 600 D) toward the skin surface, whereas in the claudin-1-deficient epidermis the tracer appeared to pass through these TJs. These findings provide the first evidence that continuous claudin-based TJs occur in the epidermis and that these TJs are crucial for the barrier function of the mammalian skin.  相似文献   

7.
Acidic airway microenvironment is one of the representative pathophysiological features of chronic inflammatory respiratory diseases. Epithelial barrier function is maintained by TJs (tight junctions), which act as the first physical barrier against the inhaled substances and pathogens of airway. As previous studies described, acid stress caused impaired epithelial barriers and led the hyperpermeability of epithelium. However, the specific mechanism is still unclear. We have showed previously the existence of TRPV (transient receptor potential vanilloid) 1 channel in airway epithelium, as well as its activation by acidic stress in 16HBE cells. In this study, we explored the acidic stress on airway barrier function and TJ proteins in vitro with 16HBE cell lines. Airway epithelial barrier function was determined by measuring by TER (trans-epithelial electrical resistance). TJ-related protein [claudin-1, claudin-3, claudin-4, claudin-5, claudin-7 and ZO-1 (zonula occluden 1)] expression was examined by western blotting of insoluble fractions of cell extraction. The localization of TJ proteins were visualized by immunofluorescent staining. Interestingly, stimulation by pH 6.0 for 8 h slightly increased the epithelial resistance in 16HBE cells insignificantly. However, higher concentration of hydrochloric acid (lower than pH 5.0) did reduce the airway epithelial TER of 16HBE cells. The decline of epithelial barrier function induced by acidic stress exhibited a TRPV1-[Ca2+]i-dependent pathway. Of the TJ proteins, claudin-3 and claudin-4 seemed to be sensitive to acidic stress. The degradation of claudin-3 and claudin-4 induced by acidic stress could be attenuated by the specific TRPV1 blocker or intracellular Ca2+ chelator BAPTA/AM [1,2-bis-(o-aminophenoxy)ethane-N,N,N'',N''-tetra-acetic acid tetrakis(acetoxymethyl ester)].  相似文献   

8.
Tight junctions mediate the intercellular diffusion barrier found in epithelial tissues but they are not static complexes; instead there is rapid movement of individual proteins within the junctions. In addition some tight junction proteins are continuously being endocytosed and recycled back to the plasma membrane. Understanding the dynamic behaviour of tight junctions is important as they are altered in a range of pathological conditions including cancer and inflammatory bowel disease. In this study we investigate the effect of treating epithelial cells with a small molecule inhibitor (YM201636) of the lipid kinase PIKfyve, a protein which is involved in endocytic trafficking. We show that MDCK cells treated with YM201636 accumulate the tight junction protein claudin-1 intracellularly. In contrast YM201636 did not alter the localization of other junction proteins including ZO-1, occludin and E-cadherin. A biochemical trafficking assay was used to show that YM201636 inhibited the endocytic recycling of claudin-1, providing an explanation for the intracellular accumulation. Claudin-2 was also found to constantly recycle in confluent MDCK cells and treatment with YM201636 blocked this recycling and caused accumulation of intracellular claudin-2. However, claudin-4 showed negligible endocytosis and no detectable intracellular accumulation occurred following treatment with YM201636, suggesting that not all claudins show the same rate of endocytic trafficking. Finally, we show that, consistent with the defects in claudin trafficking, incubation with YM201636 delayed formation of the epithelial permeability barrier. Therefore, YM201636 treatment blocks the continuous recycling of claudin-1/claudin-2 and delays epithelial barrier formation.  相似文献   

9.
Tight junctions create a paracellular permeability barrier that is breached when nonsteroidal anti-inflammatory drugs cause gastrointestinal injury, including increased gastrointestinal permeability. However, the mechanism by which aspirin affects the function of gastric epithelial tight junctions is unknown. Thus, we examined the effect of aspirin on gastric mucosal barrier properties and tight junction organization using MKN28, a human gastric epithelial cell line that expresses claudin-3, claudin-4, claudin-7, zonula occludens (ZO)-1, and occludin, but not claudin-2 or claudin-5, as determined by immunoblot analysis and immunofluorescent staining. Aspirin (5 mM) treatment of MKN28 gastric epithelial monolayers significantly decreased transepithelial electrical resistance and increased dextran permeability. Both aspirin-mediated permeability and phosphorylation of p38 MAPK were significantly attenuated by SB-203580 (a p38 MAPK inhibitor) but not by U-0126 (a MEK1 inhibitor) or SP-600125 (a JNK inhibitor). Aspirin significantly decreased the quantity of claudin-7 protein produced by MKN28 cells but not the quantity of claudin-3, claudin-4, ZO-1, or occludin. The aspirin-induced decrease in claudin-7 protein was completely abolished by SB-203580 pretreatment. These results demonstrate, for the first time, that claudin-7 protein is important in aspirin-induced gastric barrier loss and that p38 MAPK activity mediates this epithelial barrier dysfunction. tight junction; p38 mitogen-activated protein kinase; permeability  相似文献   

10.
Protein kinase C (PKC) is overexpressed in cancer, including pancreatic cancer, compared with normal tissue. Moreover, PKCα is considered one of the biomarkers for the diagnosis of cancers. In several human cancers, the claudin tight junction molecules are abnormally regulated and are thus promising molecular targets for diagnosis and therapy with Clostridium perfringens enterotoxin (CPE). In order to investigate the changes of tight junction functions of claudins via PKCα activation in pancreatic cancer cells, the well-differentiated human pancreatic cancer cell line HPAC, with its highly expressed tight junction molecules and well-developed barrier function, was treated with the PKC activator 12-O-tetradecanoylphorbol 13-acetate (TPA). Treatment with TPA modified the activity of phosphoPKCα and caused an increase of the Snail family members Snail, Slug and Smad-interacting protein 1 and a decrease of E-cadherin. In HPAC cells treated with TPA, downregulation of claudin-1 and mislocalization of claudin-4 and occludin around the nuclei were observed, together with a decrease in the numbers of tight junction strands and an increase in phosphorylation of claudin-4. The barrier function and the cytotoxicity of CPE were significantly decreased on TPA treatment. All such changes after TPA treatment were prevented by inhibitors of panPKC and PKCα. These findings suggest that, in human pancreatic cancer cells, PKCα activation downregulates tight junction functions as a barrier and as a receptor of CPE via the modification of claudin-1 and −4 during epithelial to mesenchymal transition-like changes. PKCα inhibitors might represent potential therapeutic agents against human pancreatic cancer cells by use of CPE cytotoxicity via claudin-4.  相似文献   

11.
Vascular leakage pathologies such as pleural effusion and hemorrhage are hallmarks of anthrax pathogenesis. We previously reported that anthrax lethal toxin (LT), the major virulence factor of anthrax, reduces barrier function in cultured primary human microvascular endothelial cells. Here, we show that LT-induced barrier dysfunction is accompanied by the reduced expression of the endothelial tight junction (TJ) protein claudin-5 but no change in the expression of other TJ components occludin, ZO-1, ZO-2, or the adherens junction (AJ) protein VE-cadherin. The downregulation of claudin-5 correlated temporally and dose-dependently with the reduction of transendothelial electrical resistance. LT-induced loss of claudin-5 was independent of cell death and preceded the appearance of actin stress fibers and altered AJ morphology. Pharmacological inhibition of MEK-1/2, two kinases that are proteolytically inactivated by LT, showed a similar reduction in claudin-5 expression. We found that LT reduced claudin-5 mRNA levels but did not accelerate the rate of claudin-5 degradation. Mice challenged with LT also showed significant reduction in claudin-5 expression. Together, these findings support a possible role for LT disruption of endothelial TJs in the vascular leakage pathologies of anthrax.  相似文献   

12.
Claudins are transmembrane proteins of the tight junction that determine and regulate paracellular ion permeability. We previously reported that claudin-8 reduces paracellular cation permeability when expressed in low-resistance Madin-Darby canine kidney (MDCK) II cells. Here, we address how the interaction of heterologously expressed claudin-8 with endogenous claudin isoforms impacts epithelial barrier properties. In MDCK II cells, barrier improvement by claudin-8 is accompanied by a reduction of endogenous claudin-2 protein at the tight junction. Here, we show that this is not because of relocalization of claudin-2 into the cytosolic pool but primarily due to a decrease in gene expression. Claudin-8 also affects the trafficking of claudin-2, which was displaced specifically from the junctions at which claudin-8 was inserted. To test whether replacement of cation-permeable claudin-2 mediates the effect of claudin-8 on the electrophysiological phenotype of the host cell line, we expressed claudin-8 in high-resistance MDCK I cells, which lack endogenous claudin-2. Unlike in MDCK II cells, induction of claudin-8 in MDCK I cells (which did not affect levels of endogenous claudins) did not alter paracellular ion permeability. Furthermore, when endogenous claudin-2 in MDCK II cells was downregulated by epidermal growth factor to create a cell model with low transepithelial resistance and low levels of claudin-2, the permeability effects of claudin-8 were also abolished. Our findings demonstrate that claudin overexpression studies measure the combined effect of alterations in both endogenous and exogenous claudins, thus explaining the dependence of the phenotype on the host cell line.  相似文献   

13.
The number of patients with uterine endometrial carcinoma, the cause of which involves sex hormones, has recently been growing rapidly because of increases in life expectancy and obesity. Tight junction proteins claudin-3 and ?4 are receptors of Clostridium perfringens enterotoxin (CPE) and increase during endometrial carcinogenesis. In the present study of normal human endometrial epithelial (HEE) cells and the uterus cancer cell line Sawano, we investigate changes in the expression of tight junction proteins including claudin-3 and ?4, the fence and barrier functions of the tight junction and the cytotoxic effects of CPE by sex hormones. In primary cultured HEE cells, treatment with progesterone (P4) but not estradiol (E2), induced claudin-1, ?3, ?4 and ?7 and occludin, together with the downregulation of the barrier function but not the fence function. In Sawano cells, claudin-3 and ?4 were upregulated by E2 but not by P4, together with a disruption of both the barrier and fence function. In primary cultured HEE cells, claudin-3 and ?4 were localized at the apicalmost regions (tight junction areas) and no cytotoxicity of CPE was observed. In Sawano cells, claudin-3 and ?4 were found not only in the apicalmost regions but also at the basolateral membrane and the cytotoxicity of CPE was enhanced by E2. Thus, tight junctions are physiological regulated by sex hormones in normal HEE cells during the menstrual cycle suggesting that safer and more effective therapeutic methods targeting claudins in uterine cancer can be developed.  相似文献   

14.
Claudins are a family of integral membrane proteins of the tight junction that are thought to participate in the permeation of solutes across epithelia via the paracellular pathway. Claudin-8 is expressed in the distal renal tubule, which has a characteristically low passive permeability to monovalent cations. To test the hypothesis that claudin-8 plays a role in forming a tight paracellular barrier to cations, stably transfected Madin-Darby canine kidney II cell lines with inducible expression of claudin-8 were generated. Induction of claudin-8 expression was associated with down-regulation of endogenous claudin-2 protein. Other tight junction proteins were expressed and targeted normally, and the number of junctional strands was minimally altered. By Ussing chamber and radiotracer flux studies, claudin-8 expression was found to reduce paracellular permeability to monovalent inorganic and organic cations and to divalent cations but not to anions or neutral solutes. The size selectivity, charge dependence, and activation energy of paracellular cation permeation were all unchanged. These observations are consistent with a model in which claudin-2 encodes a highly cation-permeable channel, whereas claudin-8 acts primarily as a cation barrier. When exogenous claudin-8 is expressed, it replaces endogenous claudin-2, inserting in its place into existing tight junction strands, thereby reducing the apparent number of functional cation pores. Our findings suggest that claudin-8 plays an important role in the paracellular cation barrier of the distal renal tubule.  相似文献   

15.
Tight junction proteins in the claudin family regulate epithelial barrier function. We examined claudin expression by human fetal lung (HFL) alveolar epithelial cells cultured in medium containing dexamethasone, 8-bromo-cAMP, and isobutylmethylxanthanine (DCI), which promotes alveolar epithelial cell differentiation to a type II phenotype. At the protein level, HFL cells expressed claudin-1, claudin-3, claudin-4, claudin-5, claudin-7, and claudin-18, where levels of expression varied with culture conditions. DCI-treated differentiated HFL cells cultured on permeable supports formed tight transepithelial barriers, with transepithelial resistance (TER) >1,700 ohm/cm(2). In contrast, HFL cells cultured in control medium without DCI did not form tight barriers (TER <250 ohm/cm(2)). Consistent with this difference in barrier function, claudins expressed by HFL cells cultured in DCI medium were tightly localized to the plasma membrane; however, claudins expressed by HFL cells cultured in control medium accumulated in an intracellular compartment and showed discontinuities in claudin plasma membrane localization. In contrast to claudins, localization of other tight junction proteins, zonula occludens (ZO)-1, ZO-2, and occludin, was not sensitive to HFL cell phenotype. Intracellular claudins expressed by undifferentiated HFL cells were localized to a compartment containing early endosome antigen-1, and treatment of HFL cells with the endocytosis inhibitor monodansylcadaverine increased barrier function. This suggests that during differentiation to a type II cell phenotype, fetal alveolar epithelial cells use differential claudin expression and localization to the plasma membrane to help regulate tight junction permeability.  相似文献   

16.
The epithelium of upper respiratory tissues such as nasal mucosa forms a continuous barrier to a wide variety of exogenous antigens. The epithelial barrier function is regulated in large part by the intercellular junctions, referred to as gap and tight junctions. However, changes of gap and tight junctions during differentiation of human nasal epithelial (HNE) cells are still unclear. In the present study, to investigate changes of gap and tight junctions during differentiation of HNE cells in vitro, we used primary human HNE cells cocultured with primary human nasal fibroblast (HNF) cells in a noncontact system. In HNE cells cocultured with HNF cells for 2 weeks, numerous elongated cilia-like structures were observed compared to those without HNF cells. In the coculture, downregulation of Cx26 and upregulation of Cx30.3 and Cx31 were observed together with extensive gap junctional intercellular communication. Furthermore, expression of the tight junction proteins claudin-1, claudin-4, occludin and ZO-2 was increased. These results suggest that switching in expression of connexins and induction of tight junction proteins may be closely associated with differentiation of HNE cells in vitro and that differentiation of HNE cells requires unknown soluble factors secreted from HNF cells.  相似文献   

17.
The tight junction tetraspan protein claudin-4 creates a charge-selective pore in the paracellular pathway across epithelia. The structure of the pore is unknown, but is presumed to result from transcellular adhesive contacts between claudin's extracellular loops. Here we report the expression of claudin-4 by baculovirus infection of Sf9 cells and describe the biochemical analysis suggesting it has a hexameric quaternary configuration. We show the detergent perfluoro-octanoic acid is able to maintain oligomeric claudin species. Sucrose velocity centrifugation and laser light scattering are also used to investigate the oligomeric state of claudin-4. In contrast to proteins of similar topology, such as gap junction family connexins, the oligomeric state of claudins appears more dynamic. These data suggest the structural organization of claudins in tight junction pores is unique.  相似文献   

18.

Background  

The tight junction is a dynamic structure that is regulated by a number of cellular signaling processes. Occludin, claudin-1, claudin-2 and claudin-3 are integral membrane proteins found in the tight junction of MDCK cells. These proteins are restricted to this region of the membrane by a complex array of intracellular proteins which are tethered to the cytoskeleton. Alteration of these tight junction protein complexes during pathological events leads to impaired epithelial barrier function that perturbs water and electrolyte homeostasis. We examined MDCK cell barrier function in response to challenge by the proinflammatory cytokines tumor necrosis factor-α (TNFα) and interferon-γ (IFNγ).  相似文献   

19.
Constitutive activation of Ras or Ras-mediated signaling pathways is one of the initial steps during tumorigenesis that promotes neoplastic transformation. Recently it was reported that in Ha-Ras overexpressing MDCK cells the tight junction proteins claudin-1, occludin and ZO-1 were absent at cell-cell contact sites but present in the cytoplasm. Inhibition of MEK1 activity recruited all three proteins to the cell membrane leading to a restoration of the tight junction barrier function in MDCK cells. In order to evaluate the relevance of the MEK1 pathway in tight junction regulation in breast cancer cells, we investigated the effect ofMEK1 inhibition on expression of claudin-1, occludin and ZO-1 in natively claudin-1 expressing T47-D cells (low Ras activity), claudin-1 negative MCF-7 cells (elevated Ras activity) as well as two retroviral claudin-1 transduced MCF-7 daughter cell lines with prominent membrane and cytoplasmic claudin-1 dominant homing, respectively. Although we effectively blocked phosphorylation of MAPKs ERK-1 and ERK-2 using the selective MEK1 inhibitor PD98059, no quantitative changes of mRNA or protein levels of claudin-1, occludin and ZO-1 could be detected in all cell lines investigated. Furthermore, immnfluorescence analysis of claudin-1 revealed that inhibition of the MAPK pathway did not alter th e subcellular cytoplasmic distribution of claudin-1 to be more membrane specific. Finally, the diffusion barrier properties of tight junctions as analyzed by transepithelial resistance (TER) or paracellular flux analysis of 3 and 40 kDa dextran of tight junctions were not altered in the claudin-1 positive T47-D and the MCF-7 cell lines. Our findings indicate that the proposed involvement of the Ras-MEK-ERK pathway is likely not involved in the dysregulated tight junction formation in breast tumor cells and indicates that elevated activity of Ras might not be of general importance for the disruption of tight junction structures in breast tumors.  相似文献   

20.
Endothelial cells of the blood-brain barrier form complex tight junctions, which are more frequently associated with the protoplasmic (P-face) than with the exocytoplasmic (E-face) membrane leaflet. The association of tight junctional particles with either membrane leaflet is a result of the expression of various claudins, which are transmembrane constituents of tight junction strands. Mammalian brain endothelial tight junctions exhibit an almost balanced distribution of particles and lose this morphology and barrier function in vitro. Since it was shown that the brain endothelial tight junctions of submammalian species form P-face-associated tight junctions of the epithelial type, the question of which molecular composition underlies the morphological differences and how do these brain endothelial cells behave in vitro arose. Therefore, rat and chicken brain endothelial cells were investigated for the expression of junctional proteins in vivo and in vitro and for the morphology of the tight junctions. In order to visualize morphological differences, the complexity and the P-face association of tight junctions were quantified. Rat and chicken brain endothelial cells form tight junctions which are positive for claudin-1, claudin-5, occludin and ZO-1. In agreement with the higher P-face association of tight junctions in vivo, chicken brain endothelia exhibited a slightly stronger labeling for claudin-1 at membrane contacts. Brain endothelial cells of both species showed a significant alteration of tight junctions in vitro, indicating a loss of barrier function. Rat endothelial cells showed a characteristic switch of tight junction particles from the P-face to the E-face, accompanied by the loss of claudin-1 in immunofluorescence labeling. In contrast, chicken brain endothelial cells did not show such a switch of particles, although they also lost claudin-1 in culture. These results demonstrate that the maintenance of rat and chicken endothelial barrier function depends on the brain microenvironment. Interestingly, the alteration of tight junctions is different in rat and chicken. This implies that the rat and chicken brain endothelial tight junctions are regulated differently.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号