首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Brain Endo-Oligopeptidase A, a Putative Enkephalin Converting Enzyme   总被引:6,自引:4,他引:2  
Endo-oligopeptidase A, highly purified from the cytosol fraction of bovine brain by immunoaffinity chromatography, has been characterized as a thiol endopeptidase. This enzyme, known to hydrolyze the Phe5-Ser6 bond of bradykinin and the Arg8-Arg9 bond of neurotensin, has been shown to produce, by a single cleavage, Leu5-enkephalin or Met5-enkephalin from small enkephalin-containing peptides. Enkephalin formation could be inhibited in a concentration-dependent manner by the alternative substrate bradykinin. The optimal substrate size was found to be eight to 13 amino acids, with enkephalin the only product released from precursors in which this sequence is immediately followed by a pair of basic residues. However, the specificity constants (kcat/Km) obtained for endo-oligopeptidase A hydrolysis of bradykinin, neurotensin, and dynorphin B are of the same order, a result indicating that the substrate amino acid sequence is not the only factor determining the cleavage site of this enzyme.  相似文献   

2.
It has been previously reported that both the cysteinyl-endo-oligopeptidase A and the metalloendopeptidase EC 3.4.24.15 are able to generate enkephalin from a number of enkephalin-containing peptides, including dynorphin A1-8. The present study shows that only endo-oligopeptidase A is able to generate [Leu5]enkephalin and [Met5]enkephalin from dynorphin A1-8 and from metorphamide respectively. It is also shown that endo-oligopeptidase A neither hydrolyses the specific EC 3.4.24.15 substrate alpha-N-benzoyl-Gly-Ala-Ala-Phe p-aminobenzoate, nor is inhibited by the specific EC 3.4.24.15 inhibitor N-[1(RS)-carboxy-2-phenylethyl]-alpha-Ala-Ala-Phe p-aminobenzoate.  相似文献   

3.
In order to identify which peptidases are involved in the catabolism of neurotensin in the CNS, [3H-Tyr3,11]-neurotensin was superfused over rat hypothalamic slices in the presence and absence of peptidase inhibitors. The degree of degradation of the peptide was determined by reverse phase HPLC separation of 3H-labelled neurotensin from 3H-labelled products. Very little degrading activity was released from the slice into the medium during the superfusion. In the absence of inhibitors, 20 to 50% of 3H-neurotensin was degraded giving mainly 3H-Tyr along with other unidentified 3H-labelled products. Inhibitors of endopeptidase 24.11 (phosphoramidon) and proline endopeptidase (antibody) had no effect on the degradation. Captopril, an inhibitor of angiotensin converting enzyme, had a small inhibitory effect. In contrast, dynorphin(1-13), an inhibitor of a soluble, thiol dependent metallopeptidase which hydrolyses neurotensin at Arg8-Arg9, gave greater than 80% inhibition of 3H-neurotensin degradation in the slice preparation. 1,10-Phenanthroline, an inhibitor of metallopeptidases, was also an effective inhibitor. The dynorphin sequence responsible for the inhibition contains the Arg6-Arg7 bond. Other peptides (bradykinin and angiotensin) which are substrates of the soluble metallopeptidase also inhibited neurotensin breakdown by the slice. This evidence suggests that this thiol dependent metalloendopeptidase is the major neurotensin catabolizing enzyme in hypothalamic slices.  相似文献   

4.
《Peptides》1988,9(5):945-955
Two endopeptidases displaying similar specificities towards peptide hormone substrates but differing in molecular size have been identified in rabbit heart and isolated by a combination of ion-exchange chromatography, gel filtration and preparative gel electrophoresis. These two enzymes share several properties with the previously described rabbit brain endooligopeptidase A. They were shown to produce, by a single peptide bond cleavage, [Met5] enkephalin and [Leu5]enkephalin from small enkephalin containing peptides. They also hydrolyze the Phe5-Ser5 bond of bradykinin and the Arg8-Arg9 bond of neurotensin. Characteristically, the activity of both low and high Mr enzymes is restricted to oligopeptides. Both forms of heart endooligopeptidase A are inhibited by antibodies raised against the brain enzyme. When electrophoresed in SDS-polyacrylamide gel under denaturing conditions, the low Mr heart enzyme shows a major band of Mr=73,000, comparable in size to the brain enzyme. The SDS-PAGE of the high and low Mr enzymes analyzed by immunoblotting with an antibody raised against low Mr brain endooligopeptidase A, showed a major antigen band corresponding to Mr=72,000. In addition, immunoblotting has also demonstrated that a monoclonal antibody antitubulin reacts with a polypeptide corresponding to Mr=50,000 present in the purified high Mr endooligopeptidase A. Both enzymes are activated by dithiothreitol and inhibited by thiol reagents, but are not affected by leupeptin, DFP or EDTA, thus indicating that they should be classified as nonlysosomal cysteinyl-endooligopeptidase A.  相似文献   

5.
The effect of peptidase inhibitors on the degradation of [3H]-bradykinin by rat hypothalamic slices was studied using HPLC to separate and identify the products. The degradation appears to be mainly mediated by an enzyme which cleaves the peptide at the Phe5-Ser6 bond and is inhibited by 1,10-phenanthroline, dynorphin(1-13) and carboxyphenylethyl-Ala-Ala-Phe-p-aminobenzoate. This suggest the involvement of a membrane bound variant of the soluble metalloendopeptidase (EC3.4.24.15) isolated from rat brain which degrades neurotensin, angiotensin and other neuropeptides as well as bradykinin.  相似文献   

6.
N-[1 (R,S)-Carboxy-3-phenylpropyl]-Ala-Ala-Phe-p-aminobenzoate (cFP-AAF-pAB) is a potent, substrate-related, specific inhibitor of endopeptidase 24.15, an enzyme involved in the metabolism of bioactive peptides including bradykinin, neurotensin, and proenkephalin, and prodynorphin-derived enkephalin precursors. The observation that this inhibitor causes a pronounced decrease in blood pressure after intravenous infusion into normotensive rats posed the question of the mechanism of this hypotensive response. It was suggested previously that cFP-AAF-pAB is an inhibitor of angiotensin converting enzyme (ACE) and that this function can account for the hypotensive response to the inhibitor. We present here evidence that cFP-AAF-pAB has no intrinsic ACE-inhibitory activity. The previously observed inhibition is shown to be dependent on cleavage of the Ala-Phe bond in the inhibitor by endopeptidase 24.11 (enkephalinase, EC 3.4.24.11), a contaminant of some ACE preparations.  相似文献   

7.
[3H]Dynorphin A(1-8) is readily metabolised by rat lumbosacral spinal cord tissue in vitro, affording a variety of products including a significant amount (20% recovered activity) of [3H][Leu5]enkephalin. In the presence of the peptidase inhibitors bestatin, captopril, thiorphan, and leucyl-leucine, [3H][Leu5]enkephalin was the major metabolic product, accounting for 60% of recovered activity. Production of [3H][Leu5]enkephalin was seen across all gross brain regions. The enzyme responsible for the cleavage has an optimal substrate length of 8-13 amino acids and is inhibited by N-[1-(RS)-carboxy-2-phenylethyl]-Ala-Ala-Phe-p-aminobenzoate, a site-directed inhibitor of the metalloendopeptidase EC 3.4.24.15. However the enzymic breakdown also has properties in common with involvement of endo-oligopeptidase A. Possible consequences of the formation of [Leu5]-enkephalin from the smaller dynorphins are discussed.  相似文献   

8.
A membrane-bound metallo-endopeptidase that hydrolyzes human parathyroid hormone (1-84) and reduced hen egg lysozyme between hydrophilic amino acid residues was isolated from rat kidney [Yamaguchi et al. (1991) Eur. J. Biochem. 200, 563-571]. In this study, the hydrolyses of various peptide hormones and neuropeptides by the metallo-endopeptidase were examined using an automated gas-phase protein sequencer. The purified enzyme hydrolyzed the oxidized insulin B chain and substance P most rapidly, followed by big endothelin 1, neurotensin, angiotensin 1, endothelin 1, rat alpha-atrial natriuretic peptide and bradykinin, in this order. The enzyme mainly cleaved these peptides at bonds involving a hydrophilic amino acid residue. However, it cleaved bonds between less hydrophilic amino acid pairs in several short peptides, e.g. at the His5-Leu6 bond in oxidized insulin B chain, the Ile28-Val29 bond in big endothelin-1 and the Ile5-His6 and Phe8-His9 bonds in angiotensin 1. The enzyme cleavage sites of oxidized insulin B chain and angiotensin 1 were different from the reported sites cleaved by meprin and by endopeptidase 2, respectively. Kinetic determination of bradykinin hydrolysis by the purified enzyme yielded values of Km = 18.1 microM and kcat = 0.473 s-1, giving a ratio of kcat/Km = 2.62 x 10(4) s-1.M-1. The Km value was about 20-fold lower than that reported for meprin and endopeptidase 2. These results indicate that the membrane-bound metallo-endopeptidase from rat kidney is distinguished from meprin and endopeptidase 2 in its substrate specificity and is not parathyroid hormone specific, but has potential capacities to inactivate various biologically active peptide hormones and neuropeptides in vivo.  相似文献   

9.
The degradation of neurotensin and D-Tyr11 neurotensin by apparently homogeneous preparations of rabbit brain endo-oligopeptidase A and endo-oligopeptidase B (Proline-endopeptidase) was studied. Peptide fragments were isolated by high performance liquid chromatography and identified by amino acid analysis. Endo-oligopeptidase A cleaved neurotensin at the Arg8-Arg9 bond whereas D-Tyr11 neurotensin was not significantly hydrolysed. Endo-oligopeptidase B cleaved at the carboxyl side of Pro7, Pro10 in neurotensin and at Pro7 in D-Tyr11 neurotensin. The concentration dependent inhibition of neurotensin degradation by bradykinin and vice-versa represents additional evidence that endo-oligopeptidase A cleaves both Phe5-Ser6 bond of bradykinin and the Arg8-Arg9 bond of neurotensin.  相似文献   

10.
A new procedure that employs a one-pot, oxidative Hofmann rearrangement to incorporate a urea linkage into peptide backbones is detailed herein. This methodology was used to replace the scissile peptide bonds of [Leu5]enkephalin and a hexapeptide HIV-1 protease substrate. The [Leu5]enkephalin analogue was found to inhibit cleavage of hippurylhistidylleucine (HHL) by porcine kidney angiotensin-converting enzyme (PK-ACE) with a 0.88 mM IC50 value, comparable to the Michaelis constant of [Leu5]enkephalin with the same enzyme. The HIV-1 protease substrate analogue was shown to inhibit HIV-1 protease with an IC50=34 microM.  相似文献   

11.
Endopeptidase-24.11 (EC 3.4.24.11), purified to homogeneity from pig kidney, was shown to hydrolyse a wide range of neuropeptides, including enkephalins, tachykinins, bradykinin, neurotensin, luliberin and cholecystokinin. The sites of hydrolysis of peptides were identified, indicating that the primary specificity is consistent with hydrolysis occurring at bonds involving the amino group of hydrophobic amino acid residues. Of the substrates tested, the amidated peptide substance P is hydrolysed the most efficiently (Km = 31.9 microM; kcat. = 5062 min-1). A free alpha-carboxy group at the C-terminus of a peptide substrate is therefore not essential for efficient hydrolysis by the endopeptidase. A large variation in kcat./Km values was observed among the peptide substrates studied, a finding that reflects a significant influence of amino acid residues, remote from the scissile bond, on the efficiency of hydrolysis. These subsite interactions between peptide substrate and enzyme thus confer some degree of functional specificity on the endopeptidase. The inhibition of endopeptidase-24.11 by several compounds was compared with that of pig kidney peptidyldipeptidase A (EC 3.4.15.1). Of the inhibitors examined, only N-[1(R,S)-carboxy-2-phenylethyl]-Phe-p-aminobenzoate inhibited endopeptidase-24.11 but not peptidyldipeptidase. Captopril (D-3-mercapto-2-methylpropanoyl-L-proline), Teprotide (pGlu-Trp-Pro-Arg-Pro-Gln-Ile-Pro-Pro) and MK422 [N-[(S)-1-carboxy-3-phenylpropyl]-L-Ala-L-Pro] were highly selective as inhibitors of peptidyldipeptidase. Although not wholly specific, phosphoramidon was a more potent inhibitor of endopeptidase-24.11 than were any of the synthetic compounds tested.  相似文献   

12.
Oligopeptidases are tissue endopeptidases that do not attack proteins and are likely to be involved in the maturation and degradation of peptide hormones and neuropeptides. The rabbit brain endooligopeptidase A and the rat testes soluble metallopeptidase (EC 3.4.24.15) are thiol-activated oligopeptidases which are able to generate enkephalin from a number of opioid peptides and to inactivate bradykinin and neurotensin by hydrolyzing the same peptide bonds. A monospecific antibody raised against the purified rabbit brain endooligopeptidase A allowed the identification of a 2. 3 kb cDNA coding for a truncated enzyme of 512 amino acids, displaying the same enzymatic features as endooligopeptidase A. In spite of all efforts, employing several strategies, the full-length cDNA could not be cloned until now. The analysis of the deduced amino acid sequence showed no similarity to the rat testes metalloendopeptidase sequence, except for the presence of the typical metalloprotease consensus sequence [HEXXH]. The antibody raised against recombinant endooligopeptidase A specifically inhibited its own activity and reduced the thiol-activated oligopeptidase activity of rabbit brain cytosol to less than 30%. Analysis of the endooligopeptidase A tissue distribution indicated that this enzyme is mainly expressed in the CNS, whereas the soluble metallo EC 3.4.24.15 is mainly expressed in peripheral tissues.  相似文献   

13.
Following incubation of [3H]dynorphin A (1-8) and [3H]dynorphin A (1-9) with suspensions of guinea pig brain membranes, analysis of the supernatants by HPLC has shown that both peptides are degraded at 25 degrees C and at 0 degrees C. Bestatin and captopril reduce degradation at 0 degrees C but for a similar degree of protection at 25 degrees C arginine-containing dipeptides are also required. The effects of these peptidase inhibitors on the degradation profiles indicate that [3H]dynorphin A (1-8) has three main sites of cleavage: the Tyr1-Gly2, Arg6-Arg7, and Leu5-Arg6 bonds. With [3H]dynorphin A (1-9) as substrate the Arg7-Ile8 and Ile8-Arg9 bonds are also liable to cleavage. In binding assays, in contrast to the effects of peptidase inhibitors on the degradation of unbound [3H]dynorphin A (1-8) and [3H]dynorphin A (1-9), bestatin and captopril have little effect on the binding characteristics of the tritiated dynorphin A fragments at the kappa-site at 0 degrees C. However, at 25 degrees C binding is low in the absence of peptidase inhibitors. When binding at mu- and delta-sites is prevented, the maximal binding capacities of [3H]dynorphin A (1-8), [3H]dynorphin A (1-9), and [3H](-)-bremazocine at the kappa-site are similar; [3H]dynorphin A (1-9) has 5-10 times higher affinity for the kappa-site than [3H]dynorphin A (1-8). Comparison of the effects of peptidase inhibitors on unbound dynorphin A fragments with their effects in binding assays suggests that the bound peptides are protected from the action of peptidases.  相似文献   

14.
Brguljan PM  Turk V  Nina C  Brzin J  Krizaj I  Popovic T 《Peptides》2003,24(12):1977-1984
Highly purified human brain cathepsin H (EC 3.4.22.16) was used to study its involvement in degradation of different brain peptides. Its action was determined to be selective. On Leu-enkephalin, dynorphin (1-6), dynorphin (1-13), alpha-neoendorphin, and Lys-bradykinin, it showed a preferential aminopeptidase activity by cleaving off hydrophobic or basic amino acids. It showed no aminopeptidase activity on bradykinin, which has Pro adjacent to its N-terminal amino acid, on neurotensin with blocked N-terminal amino acid, or on dermorphin with second amino acid D-alanine. After prolonged incubation, cathepsin H acted as an endopeptidase. Dermorphin and dynorphin (1-13) were cleaved at bonds with Phe in the P2 position, while dynorphin (1-6), alpha-neoendorphin, bradykinin and Lys-bradykinin were cleaved at bonds with Gly in the P2 position. Further on, it was shown that human brain cathepsin H activity could be controlled in vivo by cystatin C in its full-length form or its [delta1-10] variant, already known to be co-localized in astrocytes, since the Ki values for the inhibition are in the 10(-10) M range.  相似文献   

15.
Neurotensin was inactivated by membrane-bound and soluble degrading activities present in purified preparations of rat brain synaptic membranes. Degradation products were identified by HPLC and amino acid analysis. The major points of cleavage of neurotensin were the Arg8-Arg9, Pro10-Tyr11, and Tyr11-Ile12 peptide bonds with the membrane-bound activity and the Arg8-Arg9 and Pro10-Tyr11 bonds with the soluble activity. Several lines of evidence indicated that the cleavage of the Arg8-Arg9 bond by the membrane-bound activity resulted mainly from the conversion of neurotensin1-10 to neurotensin1-8 by a dipeptidyl carboxypeptidase. In particular, captopril inhibited this cleavage with an IC50 (5.7 nM) close to its K1 (7 nM) for angiotensin-converting enzyme. Thiorphan inhibited the cleavage at the Tyr11-Ile12 bond by the membrane-bound activity with an IC50 (17 nM) similar to its K1 (4.7 nM) for enkephalinase. Both cleavages were inhibited by 1,10-phenanthroline. These and other data suggested that angiotensin-converting enzyme and a thermolysin-like metalloendopeptidase (enkephalinase) were the membrane-bound peptidases responsible for cleavages at the Arg8-Arg9 and Tyr11-Ile12 bonds, respectively. In contrast, captopril had no effect on the cleavage at the Arg8-Arg9 bond by the soluble activity, indicating that the enzyme responsible for this cleavage was different from angiotensin-converting enzyme. The cleavage at the Pro10-Tyr11 bond by both the membrane-bound and the soluble activities appeared to be catalyzed by an endopeptidase different from known brain proline endopeptidases. The possibility is discussed that the enzymes described here participate in physiological mechanisms of neurotensin inactivation at the synaptic level.  相似文献   

16.
The electric organ of Torpedo marmorata contains a membrane-bound, captopril-sensitive metallopeptidase that resembles mammalian angiotensin converting enzyme (peptidyl dipeptidase A; EC 3.4.15.1). The Torpedo enzyme has now been purified to apparent homogeneity from electric organ by a procedure involving affinity chromatography using the selective inhibitor lisinopril immobilised to Sepharose via a 28-A spacer arm. The purified protein, like the mammalian enzyme, acted as a peptidyl dipeptidase in cleaving dipeptides from the C-terminus of a variety of peptide substrates, including angiotensin I, bradykinin, [Met5]enkephalin, [Leu5]enkephalin, and the model substrate hippuryl (benzoylglycyl; BzGly)-His-Leu. The hydrolysis of BzGly-His-Leu was activated by Cl-. Enzyme activity was inhibited by classical angiotensin converting enzyme inhibitors, including captopril, enalaprilat (MK422), and lisinopril (MK521). Torpedo angiotensin converting enzyme, like its mammalian counterpart, was also able to act as an endopeptidase in hydrolysing the amidated neuropeptide substance P. Hydrolysis of substance P occurred primarily at the Phe8-Gly9 bond with release of the C-terminal tripeptide, Gly-Leu-MetNH2, and this hydrolysis was blocked by selective inhibitors. The Torpedo enzyme was recognised by a polyclonal antibody to pig kidney angiotensin converting enzyme on immunoelectrophoretic (Western) blot analysis. Thus, on the basis of substrate specificity, inhibitor sensitivity, and immunological criteria, the Torpedo enzyme closely resembles mammalian angiotensin converting enzyme. However, the Torpedo enzyme appears somewhat larger (Mr = 190,000) than the pig kidney enzyme (Mr = 180,000) on sodium dodecyl sulphate-polyacrylamide gel electrophoresis. The endogenous peptide substrate(s) for Torpedo electric organ angiotensin converting enzyme and the physiological role of the enzyme in this tissue remain to be evaluated.  相似文献   

17.
A peptidase that inactivated neurotensin by cleaving the peptide at the Pro10-Tyr11 bond, generating the biologically inactive fragments neurotensin(1-10) and neurotensin(11-13) was purified from whole rat ileum homogenate. The purified enzyme behaved as a 70-75-kDa monomer as determined by SDS-PAGE analysis in reducing or non-reducing conditions and gel permeation on Ultrogel AcA34. The peptidase was insensitive to thiol-blocking agents and acidic and serine protease inhibitors but could be strongly inhibited by 1,10-phenanthroline, EDTA, dithiothreitol and heavy metal ions such as zinc, copper and cobalt. Zinc was the only divalent cation able potently to reactivate the apoenzyme. This enzyme could be distinguished from endopeptidases EC 3.4.24.15 and EC 3.4.24.11, angiotensin-converting enzyme, proline endopeptidase, aminopeptidase and pyroglutamyl-peptide hydrolase since it was not affected by micromolar concentrations of their specific inhibitors. The peptidase displayed a high affinity for neurotensin (1.6 microM). Studies concerning the specificity of the enzyme towards the sequence of neurotensin established the following. (a) Neurotensin(9-13) was the shortest partial sequence that fully inhibited tritiated neurotensin degradation; shortening the C-terminal part of the neurotensin molecule led to inactive fragments. (b) Amidation of the C-terminal end of the peptide did not prevent the recognition by the peptidase. (c) There existed a strong stereospecificity of the peptidase for the residues in positions 8, 9 and 11 of the neurotensin molecule. (d) Pro-Xaa dipeptides (where Xaa represented aromatic or hydrophobic residues) were the most potent inhibitors of tritiated neurotensin degradation while all the Xaa-Pro dipeptides tested were totally ineffective. (e) The neurotensin-related peptides: neuromedin N, xenopsin and [Lys8-Asn9]neurotensin(8-13), as well as angiotensins I and II and dynorphins(1-8) and (1-13) were as potent as neurotensin in inhibiting [3H]neurotensin hydrolysis.  相似文献   

18.
Atrial granule serine proteinase is considered the leading candidate endoproteolytic processing enzyme of pro-atrial natriuretic factor. Its cleavage specificity is directed toward a monobasic amino acid processing site, and as such, the atrial enzyme is distinguished from the family of prohormone convertases which act at dibasic amino acid processing sites. To delineate the molecular mechanisms which distinguish monobasic from dibasic amino acid-directed processing enzymes, pure atrial enzyme is needed for sequence determination leading to molecular cloning, and for preparation of antisera. An affinity chromatography purification scheme seemed a logical modification of our established procedures to yield suitable amounts of enzyme for further studies. Surprisingly, pseudo-peptide bond inhibitors of the atrial enzyme [Damodaran and Harris (1995),J. Protein Chem., this issue] formed ineffective affinity ligands, even though these compounds contain essential residues on either side of what would be the scissile bond in a peptide substrate. On the other hand, tripeptide aldehydes (based on the substrate recognition sequence of the atrial enzyme) linked to Sepharose formed effective affinity matrices, permitting purification of the enzyme in a single step from a subcellular fraction enriched for atrial granules and lysosomes. Hence, the enzyme was purified 2000-fold in 90% overall yield, and subjected to N-terminal sequence analysis through 26 residues. The sequence determined, XXPEAAGLPG[R, L]GNPVP[F, G]R[Q, I]XY[G, E]XR(N, A]V, indicates that the atrial enzyme is unique, showing little sequence homology to other proteins in the database.Abbreviations AGSP atrial granule serine proteinase - ANF atrial natriuretic factor - BSA bovine serum albumin - Bz benzoyl - EACA 6()-aminocaproic acid - HEPES N-2-hydroxyethylpiperazine-N'-propanesulfonic acid - HPLC high-performance liquid chromatography - PEG polyethylene glycol-3350 - SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Single-letter abbreviations are used to denote amino acids  相似文献   

19.
In this second paper on the synthesis of neurotensin analogues as precursors for radiolabelling, solid phase synthesis of two polyunsaturated peptides, [Dah6, delta Pro7,10]-neurotensin and acetyl-[delta Pro10]-neurotensin-(8-13), are described. The first one contains one triple bond and two double bonds susceptible to tritiation in the same molecule, the second one contains one double bond in the shortest sequence having neurotensin activity. The C-terminal residue, Boc-Leu, was esterified on the chloromethyl-resin by its cesium salt. For the other amino acids a double coupling was carried out, the first one with dicyclohexylcarbodimide and the second one with the amino acid hydroxybenzotriazole ester. Acylation of the second amino acid, on the resin, presented some difficulties to achieve completeness and several acetylations and benzoylations had to be performed in order to block the last 4 per cent of free amines. It seems that these difficulties are related to some batches of chloromethyl-resin. Incorporation of both acetylenic lysine, N alpha-Boc-N epsilon-Z-L-2,6-diamino-4-hexynoic acid, whose synthesis is described, and N alpha-Boc-L-3,4-dehydroproline was without problems in this synthesis. After cleavage by hydrofluoric acid the crude peptides were purified by gel filtration on Bio-Gel P2 and ion exchange chromatography on carboxymethylcellulose (CM 52). [Dah6, delta Pro7,10]-neurotensin so obtained (51 per cent compared to starting Boc-Leu-resin) was in homogeneous form as characterized by amino acid analysis, thin layer chromatography in different systems and high performance liquid chromatography. The hydrogenation or tritiation product was identical with native neurotensin. Unsaturated derivative and neurotensin obtained after catalytic hydrogenation were as active as native neurotensin in inhibition of 125I-[Trp11]-neurotensin binding to rat brain synaptic membranes and in guinea pig ileum contractility test. Substitution of proline and lysine by their dehydro-derivatives did not affect the biological properties of neurotensin. The tritiated neurotensin (160-180 Ci/mmol) should be a good agent for biological characterization of neurotensin receptors and for investigation of the peptide metabolism.  相似文献   

20.
Abstract— An enzyme with the specificity of a prolyl endopeptidase was purified about 880-fold from rabbit brain. The enzyme hydrolyzes peptidylprolyl-peptide and peptidylprolyl-amino acid bonds. Several biologically active peptides such as angiotensin, bradykinin, neurotensin. substance P and thyrotropin releasing hormone are degraded by hydrolysis of the bond between the carboxyl group of proline and the adjacent amino acid or ammonia respectively. The enzyme is activated by dithiothreitol and inhibited by heavy metals and thiol blocking agents. The serine protease inhibitor phenylmethanesulfonylfluoride has no effect on activity; however, inhibition was obtained with diisopropylfluorophosphate. Prolyl endopeptidase has a molecular weight of about 66,000 and a pH optimum of about 8.3. A new chromogenic substrate, N -benzyloxycarbonylglycyl-L-prolylsulfamethoxazole, was used for determination of enzyme activity. The substrate is hydrolyzed to N -benzyloxycarbonylglycyl-L-proline and free sulfamethoxazole which can be conveniently determined by a colorimetric procedure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号