首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cool-temperature-induced chlorosis in rice plants.   总被引:2,自引:1,他引:1       下载免费PDF全文
R Yoshida  A Kanno  T Sato    T Kameya 《Plant physiology》1996,110(3):997-1005
We have established an experimental system for mimicking the phenomenon of cool-temperature-induced chlorosis (CTIC) in rice plants (Oryza sativa L.). Rice seedlings were initially grown in darkness under cool-temperature conditions and then exposed to light and warm conditions to follow the expression of CTIC. Induction of CTIC in the sensitive cultivar (cv Surjamukhi) was bimodally dependent on the temperatures experienced during the initial growth in darkness. CTIC was maximally induced between 15 and 17 degrees C. A positive correlation was demonstrated between induction of CTIC and the growth activity of shoots during growth in darkness. Electrophoretic and immunoblot analysis revealed that accumulation of NADPH-protochlorophyllide oxidoreductase in plastids was also bimodally dependent on the temperatures during the growth in darkness with minimum accumulation between 15 and 17 degrees C, suggesting that the reduction of NADPH-protochlorophyllide oxidoreductase accumulation in plastids might be closely linked to a disturbance in transformations of plastids to etioplasts during the dark growth under the critical temperatures and thereby to the CTIC phenomenon. This was corroborated by electron microscopic observations. These results suggest that growth is one of the determining factors for the expression of CTIC phenotype in rice under cool temperature.  相似文献   

2.
3.
4.
5.
6.
7.
8.
9.
10.
The role of sigma factors in plastid transcription   总被引:30,自引:0,他引:30  
Allison LA 《Biochimie》2000,82(6-7):537-548
  相似文献   

11.
12.
In recent years there has been a considerable increase in our understanding of the manner by which light affects gene expression during chloroplast development. In most systems that have been studied, light acts through sensitive photoreceptor molecules and quantitatively increases or represses the level of expression of specific nuclear-and plastid-encoded genes. Although the mechanisms are obscure, a picture is beginning to emerge in which the coordination of nuclear and plastid gene expression is controlled by regulatory mechanisms originating within their respective subcellular compartments. This review summarizes some of our current knowledge concerning the nature of light-regulated gene expression in higher plants and provides a prospectus for future research in this area.  相似文献   

13.
14.
15.
16.
Selenoprotein W is a glutathione-dependent antioxidant in vivo   总被引:1,自引:0,他引:1  
Jeong Dw  Kim TS  Chung YW  Lee BJ  Kim IY 《FEBS letters》2002,516(1-3):225-228
  相似文献   

17.
18.
Chloroplast development requires the coordinated action of various proteins, many of which remain to be identified. Here, we report two novel genes, Mesophyll-cell RNAi Library line 7 (MRL7) and MRL7-Like (MRL7-L), that are involved in this process. An Arabidopsis knock-down transgenic plant (MRL7-RNAi) with delayed-greening phenotype was isolated from an RNA interference (RNAi) transformant library. Cotyledons and young leaves of MRL7-RNAi were pale in seedlings and gradually greened as the plant matured, while a knock-out in the MRL7 gene was seedling lethal. The MRL7 protein was shown to co-localize with a marker protein for nucleoids in chloroplasts, indicative of a role for the protein in chloroplast nucleic acid metabolism. Accordingly, chloroplast development was arrested upon loss of MRL7 function and the expression of plastid-encoded genes transcribed by plastid-encoded RNA polymerase (PEP) was significantly reduced in MRL7 knock-down and knock-out plants. A paralog of MRL7 (MRL7-L) was identified in the Arabidopsis genome. Both MRL7 and MRL7-L are only found in land plants and encode previously uncharacterized proteins without any known conserved domain. Like MRL7, knock-down of MRL7-L also resulted in a virescent phenotype, and a similar effect on plastid gene expression. However, the MRL7-L protein was localized to the chloroplast stroma. Taken together, our data indicate that the two paralogous proteins MRL7 and MRL7-L have essential but distinct roles during early chloroplast development and are involved in regulation of plastid gene expression.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号