首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Biphenanthrene compound, 4, 8, 4′, 8′-tetramethoxy (1, 1′-biphenanthrene)—2, 7, 2′, 7′-tetrol (LF05), recently isolated from fibrous roots of Bletilla striata, exhibits antibacterial activity against several Gram-positive bacteria. In this study, we investigated the antibacterial properties, potential mode of action and cytotoxicity. Minimum inhibitory concentrations (MICs) tests showed LF05 was active against all tested Gram-positive strains, including methicillin-resistant Staphylococcus aureus (MRSA) and staphylococcal clinical isolates. Minimum bactericidal concentration (MBC) tests demonstrated LF05 was bactericidal against S. aureus ATCC 29213 and Bacillus subtilis 168 whereas bacteriostatic against S. aureus ATCC 43300, WX 0002, and other strains of S. aureus. Time-kill assays further confirmed these observations. The flow cytometric assay indicated that LF05 damaged the cell membrane of S. aureus ATCC 29213 and B. subtilis 168. Consistent with this finding, 4 × MIC of LF05 caused release of ATP in B. subtilis 168 within 10 min. Checkerboard test demonstrated LF05 exhibited additive effect when combined with vancomycin, erythromycin and berberine. The addition of rat plasma or bovine serum albumin to bacterial cultures caused significantly loss in antibacterial activity of LF05. Interestingly, LF05 was highly toxic to several tumor cells. Results of these studies indicate that LF05 is bactericidal against some Gram-positive bacteria and acts as a membrane structure disruptor. The application of biphenanthrene in the treatment of S. aureus infection, especially local infection, deserves further study.  相似文献   

2.
Recently, we synthesized pyrimidine derivatives of the 2′-O,4′-C-methylenoxymethylene-bridged nucleic-acid (2′,4′-BNACOC) monomer, the sugar conformation of which is restricted in N-type conformation by a seven-membered bridged structure. Oligonucleotides (BNACOC) containing this monomer show high affinity with complementary single-stranded RNA and significant resistance to nuclease degradation. Here, BNACOC consisting of 2′,4′-BNACOC monomers bearing all four bases, namely thymine, 5-methylcytosine, adenine and guanine was efficiently synthesized and properties of duplexes containing the 2′,4′-BNACOC monomers were investigated by UV melting experiments and circular dichroism (CD) spectroscopy. The UV melting curve analyses showed that the BNACOC/BNACOC duplex possessed excellent thermal stability and that the BNACOC increased thermal stability with a complementary RNA strand. On the other hand, BNACOC/DNA heteroduplexes showed almost the same thermal stability as RNA/DNA heteroduplexes. Furthermore, mismatched sequence studies showed that BNACOC generally improved the sequence selectivity with Watson–Crick base-pairing compared to the corresponding natural DNA and RNA. A CD spectroscopic analysis indicated that the BNACOC formed duplexes with complementary DNA and RNA in a manner similar to natural RNA.  相似文献   

3.
We report herein the synthesis and physical and physiological characterization of fully modified 2′-modified-4′-thioRNAs, i.e. 2′-fluoro-4′-thioRNA (F-SRNA) and 2′-O-Me-4′-thioRNA (Me-SRNA), which can be considered as a hybrid chemical modification based on 2′-modified oligonucleotides (ONs) and 4′-thioRNA (SRNA). In its hybridization with a complementary RNA, F-SRNA (15mer) showed the highest Tm value (+16°C relative to the natural RNA duplex). In addition, both F-SRNA and Me-SRNA preferred RNA as a complementary partner rather than DNA in duplex formation. The results of a comprehensive comparison of nuclease stability of single-stranded F-SRNA and Me-SRNA along with 2′-fluoroRNA (FRNA), 2′-O-MeRNA (MeRNA), SRNA, and natural RNA and DNA, revealed that Me-SRNA had the highest stability with t1/2 values of>24h against S1 nuclease (an endonuclease) and 79.2min against SVPD (a 3′-exonuclease). Moreover, the stability of Me-SRNA was significantly improved in 50% human plasma (t1/2=1631min) compared with FRNA (t1/2=53.2min) and MeRNA (t1/2=187min), whose modifications are currently used as components of therapeutic aptamers. The results presented in this article will, it is hoped, contribute to the development of 2′-modified-4′-thioRNAs, especially Me-SRNA, as a new RNA molecule for therapeutic applications.  相似文献   

4.
A large number of natural and artificial ribozymes have been isolated since the demonstration of the catalytic potential of RNA, with the majority of these catalyzing phosphate hydrolysis or transesterification reactions. Here, we describe and characterize an extremely short ribozyme that catalyzes the positionally specific transesterification that produces a 2′–3′ phosphodiester bond between itself and a branch substrate provided in trans, cleaving itself internally in the process. Although this ribozyme was originally derived from constructs based on snRNAs, its minimal catalytic motif contains essentially no snRNA sequence and the reaction it catalyzes is not directly related to either step of pre-mRNA splicing. Our data have implications for the intrinsic reactivity of the large amount of RNA sequence space known to be transcribed in nature and for the validity and utility of the use of protein-free systems to study pre-mRNA splicing.  相似文献   

5.
A new procedure has been developed for the synthesis of 3′-amino-3′-deoxyribonucleosides of adenine, cytosine and uracil by condensing the trimethylsilylated bases with peracylated 3-azido-3-deoxyribose derivative. The azido group could subsequently be reduced to amino. The 5′-phosphates of these nucleosides have been prepared and the analogues have been tested for their ability to stimulate the ribosome-catalyzed reaction of 3′(2′)-O-(N-formylmethionyl)adenosine 5′-phosphate with phenylalanyl-tRNA.  相似文献   

6.
7.
The carotenoid 4′-hydroxyechinenone (4′-hydroxy-β, β-carotene-4-one) was isolated from Micrococcus roseus. It is proposed as an intermediate between echinenone and canthaxanthin.  相似文献   

8.
The rate and extent of stereoselective reduction of 1,3-dioxo-2-methyl-2-(3′-oxo-6′-carbomethoxyhexyl)-cyclopentane to form the 1β-hydroxy-2β-methyl isomer by cultures of Schizosaccharomyces pombe ATCC 2476 was dramatically increased by addition to the fermentation of certain α,β-unsaturated ketones and allyl alcohol.  相似文献   

9.
2′,3′-Dideoxyadenosine was previously shown to be lethal to Escherichia coli and to inhibit deoxyribonucleic acid (DNA) synthesis irreversibly in this organism. It was also shown that triphosphate of this analogue terminates DNA chains in an in vitro system. Data presented here show that the nucleoside is relatively insensitive to E. coli adenosine deaminase and is converted intracellularly into the dideoxynucleotide, including the triphosphate. Thymine nucleotide pools were not reduced in inhibited bacteria, nor did preformed DNA break down. Some adenine was liberated from the dideoxyadenosine on incubation, and the latter was incorporated into ribonucleic acid. Nevertheless, about 4,000 molecules of the dideoxynucleoside were incorporated into DNA per cell. The dideoxynucleotide occurred in DNA chains in a terminal position, liberated selectively by venom phosphodiesterase. The possible nature of the lethal event is discussed.  相似文献   

10.
11.
12.
Light-directed synthesis of high-density microarrays is currently performed in the 3′→5′ direction due to constraints in existing synthesis chemistry. This results in the probes being unavailable for many common types of enzymatic modification. Arrays that are synthesized in the 5′→3′ direction could be utilized to perform parallel genotyping and resequencing directly on the array surface, dramatically increasing the throughput and reducing the cost relative to existing techniques. In this report we demonstrate the use of photoprotected phosphoramidite monomers for light-directed array synthesis in the 5′→3′ direction, using maskless array synthesis technology. These arrays have a dynamic range of >2.5 orders of magnitude, sensitivity below 1 pM and a coefficient of variance of <10% across the array surface. Arrays containing >150 000 probe sequences were hybridized to labeled mouse cRNA producing highly concordant data (average R2 = 0.998). We have also shown that the 3′ ends of array probes are available for sequence-specific primer extension and ligation reactions.  相似文献   

13.
Human Ape2 protein has 3′ phosphodiesterase activity for processing 3′-damaged DNA termini, 3′–5′ exonuclease activity that supports removal of mismatched nucleotides from the 3′-end of DNA, and a somewhat weak AP-endonuclease activity. However, very little is known about the role of Ape2 in DNA repair processes. Here, we examine the effect of interaction of Ape2 with proliferating cell nuclear antigen (PCNA) on its enzymatic activities and on targeting Ape2 to oxidative DNA lesions. We show that PCNA strongly stimulates the 3′–5′ exonuclease and 3′ phosphodiesterase activities of Ape2, but has no effect on its AP-endonuclease activity. Moreover, we find that upon hydrogen-peroxide treatment Ape2 redistributes to nuclear foci where it colocalizes with PCNA. In concert with these results, we provide biochemical evidence that Ape2 can reduce the mutagenic consequences of attack by reactive oxygen species not only by repairing 3′-damaged termini but also by removing 3′-end adenine opposite from 8-oxoG. Based on these findings we suggest the involvement of Ape2 in repair of oxidative DNA damage and PCNA-dependent repair synthesis.  相似文献   

14.
Nerve growth factor (NGF) is critical for the differentiation and maintenance of neurons in the peripheral and central nervous system. Sustained autophosphorylation of the TrkA receptor tyrosine kinase and long-lasting activation of downstream kinase cascades are hallmarks of NGF signaling, yet our knowledge of the molecular mechanisms underlying prolonged TrkA activity is incomplete. Protein phosphatase 2A (PP2A) is a heterotrimeric Ser/Thr phosphatase composed of a scaffolding, catalytic, and regulatory subunit (B, B′, and B" gene families). Here, we employ a combination of pharmacological inhibitors, regulatory subunit overexpression, PP2A scaffold subunit exchange, and RNA interference to show that PP2A containing B′ family regulatory subunits participates in sustained NGF signaling in PC12 cells. Specifically, two neuron-enriched regulatory subunits, B′β and B′δ, recruit PP2A into a complex with TrkA to dephosphorylate the NGF receptor on Ser/Thr residues and to potentiate its intrinsic Tyr kinase activity. Acting at the receptor level, PP2A/ B′β and B′δ enhance NGF (but not epidermal growth factor or fibroblast growth factor) signaling through the Akt and Ras-mitogen-activated protein kinase cascades and promote neuritogenesis and differentiation of PC12 cells. Thus, select PP2A heterotrimers oppose desensitization of the TrkA receptor tyrosine kinase, perhaps through dephosphorylation of inhibitory Ser/Thr phosphorylation sites on the receptor itself, to maintain neurotrophin-mediated developmental and survival signaling.  相似文献   

15.
16.
Whole-cell suspensions of Cylindrocarpon didymum were observed to transform 2,2′-bimorphine to the compounds 10-α-S-monohydroxy-2,2′-bimorphine and 10,10′-α,α′-S,S′-dihydroxy-2,2′-bimorphine. Mass spectrometry and 1H nuclear magnetic resonance spectroscopy confirmed the identities of these new morphine alkaloids.  相似文献   

17.
Activation of RNase L by 2′,5′-linked oligoadenylates (2-5A) is one of the antiviral pathways of interferon action. To determine the involvement of the 2-5A system in the control of human immunodeficiency virus type 1 (HIV-1) replication, a segment of the HIV-1 nef gene was replaced with human RNase L cDNA. HIV-1 provirus containing sense orientation RNase L cDNA caused increased expression of RNase L and 500- to 1,000-fold inhibition of virus replication in Jurkat cells for a period of about 2 weeks. Subsequently, a partial deletion of the RNase L cDNA which coincided with increases in virus production occurred. The anti-HIV activity of RNase L correlated with decreases in HIV-1 RNA and with an acceleration in cell death accompanied by DNA fragmentation. Replication of HIV-1 encoding RNase L was also transiently suppressed in peripheral blood lymphocytes (PBL). In contrast, recombinant HIV containing reverse orientation RNase L cDNA caused decreased levels of RNase L, increases in HIV yields, and reductions in the anti-HIV effect of alpha interferon in PBL and in Jurkat cells. To obtain constitutive and continuous expression of RNase L cDNA, Jurkat cells were cotransfected with HIV-1 proviral DNA and with plasmid containing a cytomegalovirus promoter driving expression of RNase L cDNA. The RNase L plasmid suppressed HIV-1 replication by eightfold, while an antisense RNase L construct enhanced virus production by twofold. These findings demonstrate that RNase L can severely impair HIV replication and suggest involvement of the 2-5A system in the anti-HIV effect of alpha interferon.  相似文献   

18.
By virtue of its chaperone activity, the capsid protein of dengue virus strain 2 (DENV2C) promotes nucleic acid structural rearrangements. However, the role of DENV2C during the interaction of RNA elements involved in stabilizing the 5′-3′ panhandle structure of DENV RNA is still unclear. Therefore, we determined how DENV2C affects structural functionality of the capsid-coding region hairpin element (cHP) during annealing and strand displacement of the 9-nt cyclization sequence (5CS) and its complementary 3CS. cHP has two distinct functions: a role in translation start codon selection and a role in RNA synthesis. Our results showed that cHP impedes annealing between 5CS and 3CS. Although DENV2C does not modulate structural functionality of cHP, it accelerates annealing and specifically promotes strand displacement of 3CS during 5′-3′ panhandle formation. Furthermore, DENV2C exerts its chaperone activity by favouring one of the active conformations of cHP. Based on our results, we propose mechanisms for annealing and strand displacement involving cHP. Thus, our results provide mechanistic insights into how DENV2C regulates RNA synthesis by modulating essential RNA elements in the capsid-coding region, that in turn allow for DENV replication.  相似文献   

19.
Of 2,361 water concentrates analyzed for the presence of Cryptosporidium spp. oocysts between January 1992 and May 1998, 269 (11.4%) were positive, of which 235 (87.4%) were raw and 34 were final water concentrates. Of 740 oocysts enumerated in positive samples, 656 oocysts (88.7%) were detected in raw and 84 oocysts (11.3%) were detected in final water concentrates by using a commercially available fluorescein isothiocyanate-labeled anti-Cryptosporidium sp. monoclonal antibody and the nuclear fluorogen 4′,6′-diamidino-2-phenylindole (DAPI). Of raw water positive samples, 66.8% had oocysts that contained nuclei, while 58.8% of final water samples had oocysts that contained nuclei. The most frequently identified oocysts had either no DAPI-positive nuclei and no internal morphology according to Nomarski differential interference-contrast microscopy (DIC) or four DAPI-positive nuclei together with internal contents according to DIC (39.5 and 32.8% of raw and 42.9 and 30.9% of final water positives, respectively). By use of the presence of DAPI-stained nuclei to support oocyst identification based upon oocyst wall fluorescence, 56.5% of oocysts were identified when at least one nucleus was present, while increasing the number of nuclei necessary for identification to four reduced the percentage identifiable to 32.8% in raw water concentrates. In final water concentrates, 51% of oocysts were identified using oocyst wall fluorescence and the presence of at least one nucleus, while increasing the number of nuclei necessary for identification to four reduced the percentage identifiable to 30.9%. By consolidating our identification criteria from the presence of at least one nucleus to the presence of four nuclei, we excluded approximately 20% of oocysts in either water type. Approximately 40% of oocysts detected in these United Kingdom samples were empty and could not be detected by alternative methods, including the PCR and fluorescence in situ hybridization.  相似文献   

20.
We recently reported the synthesis of 2′-fluorinated Northern-methanocarbacyclic (2′-F-NMC) nucleotides, which are based on a bicyclo[3.1.0]hexane scaffold. Here, we analyzed RNAi-mediated gene silencing activity in cell culture and demonstrated that a single incorporation of 2′-F-NMC within the guide or passenger strand of the tri-N-acetylgalactosamine-conjugated siRNA targeting mouse Ttr was generally well tolerated. Exceptions were incorporation of 2′-F-NMC into the guide strand at positions 1 and 2, which resulted in a loss of the in vitro activity. Activity at position 1 was recovered when the guide strand was modified with a 5′ phosphate, suggesting that the 2′-F-NMC is a poor substrate for 5′ kinases. In mice, the 2′-F-NMC-modified siRNAs had comparable RNAi potencies to the parent siRNA. 2′-F-NMC residues in the guide seed region position 7 and at positions 10, 11 and 12 were well tolerated. Surprisingly, when the 5′-phosphate mimic 5′-(E)-vinylphosphonate was attached to the 2′-F-NMC at the position 1 of the guide strand, activity was considerably reduced. The steric constraints of the bicyclic 2′-F-NMC may impair formation of hydrogen-bonding interactions between the vinylphosphonate and the MID domain of Ago2. Molecular modeling studies explain the position- and conformation-dependent RNAi-mediated gene silencing activity of 2′-F-NMC. Finally, the 5′-triphosphate of 2′-F-NMC is not a substrate for mitochondrial RNA and DNA polymerases, indicating that metabolites should not be toxic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号