首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Polymorphic class II (Ia) major histocompatibility complex (MHC) gene products associate intracytoplasmically with a third nonpolymorphic class II molecule, the invariant chain (Ii), which is encoded by gene(s) unlinked to the MHC. Although the role of the Ii chain in the expression of cell surface Ia molecules is unclear, it has been suggested that the Ii chain helps in the assembly and intracellular transport of class II antigens. In this study, we demonstrate that the murine polymorphic class II antigens of an interspecies mouse-human hybrid, which has segregated the murine invariant chain gene, associates with the human invariant chain gene intracytoplasmically. The murine Ia antigens are expressed on the cell surface and can function as restriction elements in antigen presentation to T cells. The biochemical analysis demonstrates that the regions of the Ii gene that are critical to its interaction with Ia molecules are conserved between species.  相似文献   

2.
The intracellular transport and location of major histocompatibility complex (MHC) class II molecules and associated invariant chain (Ii) were investigated in a human melanoma cell line. In contrast to the class II molecules, which remain stable for greater than 4 h after synthesis, the associated Ii is proteolytically processed within 2 h. During or shortly after synthesis the NH2-terminal cytoplasmic and membrane-spanning segment is in some of the Ii molecules cleaved off; during intracellular transport, class II associated and membrane integrated Ii is processed from its COOH terminus in distinct steps in endocytic compartments. Immunocytochemical studies at the light and electron microscopic level revealed the presence of class II molecules, but not of Ii on the cell surface. Intracellularly both Ii and class II molecules were localized in three morphologically and kinetically distinct compartments, early endosomes, multivesicular bodies, and prelysosomes. This localization in several distinct endosomal compartments contrasts with the localization of class II molecules in mainly one endocytic compartment in B lymphoblastoid cell lines. As in these lymphoblastoid cell lines Ii is known to be rapidly degraded it is conceivable that the rate of proteolysis of the class II associated Ii and its dissociation from class II molecules modulates the retention of the oligomeric complex in endocytic compartments, and as a consequence the steady-state distribution of these molecules within the endosomal system.  相似文献   

3.
Association of the invariant chain (Ii) with MHC class II alpha and beta chains is central for their functionality and involves the Ii CLIP(81-104) region. Ii mutants with an antigenic peptide sequence in place of the CLIP region are shown to form alphabetaIi complexes resistant to dissociation by SDS at 25 degrees C. This reflects class II peptide binding site occupancy, since substitution of the major anchor residue within the antigenic peptide sequence of one of these Ii mutants abolishes its capacity to form SDS-stable heterotrimers. Therefore, CLIP location within Ii is compatible with CLIP access to the class II binding groove. However, in wild-type Ii this access does not lead to a tight association, which seems to be affected by the Ii 81-90 region. This region, together with a region C-terminal of CLIP, is shown to contribute to Ii association with HLA-DR1 molecules. Thus, Ii mutants with non-HLA-DR1 binding sequences in place of the CLIP(87-102) region can still associate with HLA-DR1 molecules and inhibit peptide binding.  相似文献   

4.
Newly synthesized class II molecules of the major histocompatibility complex must be transported to endosomal compartments where antigens are processed for presentation to class II-restricted T cells. The invariant chain (Ii), which assembles with newly synthesized class II alpha- and beta-chains in the endoplasmic reticulum, carries one or more targeting signals for transport to endosomal compartments where Ii dissociates from alpha beta Ii complexes. Here we show that the transport route of alpha beta Ii complexes is regulated selectively by two forms of Ii (p33 and p35) that are generated by the use of alternative translation initiation sites. Using a novel quantitative surface arrival assay based on labeling with [6-3H]-D-galactose combined with biochemical modification at the cell surface with neuraminidase, we demonstrate that newly synthesized alpha beta Ii molecules containing the Ii-p33 isoform can be detected on the cell surface shortly after passage through the Golgi apparatus/trans-Golgi network. A substantial amount of these alpha beta Ii complexes are targeted to early endosomes either directly from the trans-Golgi network or after internalization from the cell surface before their delivery to antigen processing compartments. The fraction of alpha beta Ii complexes containing the p35 isoform of Ii with a longer cytosolic domain was not detected at the cell surface as determined by iodination of intact cells and the lack of susceptibility to neuraminidase trimming on ice. However, treatment with neuraminidase at 37 degrees C did reveal that some of the alpha beta Ii-p35 complexes traversed early endosomes. These results demonstrate that a fraction of newly synthesized class II molecules arrive at the cell surface as alpha beta Ii complexes before delivery to antigen processing compartments and that class II alpha beta Ii complexes associated with the two isoforms of Ii are sorted to these compartments by different transport routes.  相似文献   

5.
Transcriptional regulation of HLA class II and invariant chain genes   总被引:5,自引:0,他引:5  
Class II (Ia) antigens are coded for by a family of genes located in the human MHC (HLA). These genes are regulated in a complex manner, being constitutively expressed, inducibly expressed, or not expressed, depending on the cell type examined. 6.1.6 is a variant of a normal B lymphoblastoid line that has lost expression of all class II molecules and has previously been shown to have a defect in the regulation of class II genes. In this report, we have examined those genes by Southern and Northern blotting and have found that 6.1.6 is severely deficient in mRNA for all class II genes examined, although the genes are structurally intact. P30, a partial revertant of 6.1.6, re-expresses mRNA for a subset of class II genes. mRNA for the class II-associated invariant chain is substantially reduced but not absent in 6.1.6.  相似文献   

6.
Class II molecules of the major histocompatibility complex (MHC) are composed of two polymorphic glycoprotein chains (alpha and beta), that associate in the ER with a third, non-polymorphic glycoprotein known as the invariant chain (Ii). We have examined the relationship between the intracellular transport and physico-chemical characteristics of various combinations of murine alpha, beta and Ii chains. Biochemical and morphological analyses of transfected fibroblasts expressing class II MHC chains show that both unassembled alpha and beta chains, as well as a large fraction of alpha+beta complexes synthesized in the absence of Ii chain, are retained in the ER in association with the immunoglobulin heavy chain binding protein, BiP. Analyses by sedimentation velocity on sucrose gradients show that most incompletely assembled class II MHC species exist as high molecular weight aggregates in both transfected fibroblasts and spleen cells from mice carrying a disruption of the Ii chain gene. This is in contrast to the sedimentation properties of alpha beta Ii complexes from normal mice, which migrate as discrete, stoichiometric complexes of M(r) approximately 200,000-300,000. These observations suggest that assembly with the Ii chain prevents accumulation of aggregated alpha and beta chains in the ER, which might relate to the known ability of the Ii chain to promote exit of class II MHC molecules from the ER.  相似文献   

7.
Class II major histocompatibility complex antigens are intracellularly associated with a nonpolymorphic polypeptide referred to as the invariant chain. Before the class II heterodimer appears on the cell surface, the invariant chain dissociates but it has so far been unclear as to whether or not a proportion of the invariant chain also appears on the plasma membrane. We describe a study with three monoclonal antibodies which recognize an extracytoplasmic determinant present on all forms of the invariant chain and use them to demonstrate its presence on the surface of the intact cells. The determinants recognized by two of the antibodies were found to be located within the 60 amino acids at the extreme C-terminal (extracytoplasmic) end of the invariant chain. The invariant chain-specific monoclonal antibody, VIC-Y1, was found to bind a determinant located between amino acids 1 and 73, which correspond to mainly cytoplasmic residues. Using the C-terminal specific antibodies, the number of antibody binding sites on the surface of two B lymphoma lines was estimated to be 10(5) per cell. The results of this study appear to resolve the highly disputed question of whether or not the invariant chain can appear as a plasma membrane protein. The results are discussed in the context of a possible role for the invariant chain in antigen processing and presentation.  相似文献   

8.
Neumann J  Koch N 《FEBS letters》2005,579(27):6055-6059
The highly polymorphic major histocompatibility complex class II (MHCII) polypeptides assemble in the ER with the assistance of invariant chain (Ii) chaperone. Ii binds to the peptide-binding pocket of MHCII heterodimers. We explored the mechanism how MHCII subunits attach to Ii. Expression with single alpha or beta subunits from three human HLA and two mouse H2 class II isotypes revealed that Ii co-isolates predominantly with the alpha polypeptide. Co-isolation with alpha chain requires the groove binding Ii-segment and depends on M91 of Ii. Immunoprecipitation of Ii from pulse chase labeled cells showed sequential assembly of alpha and beta chains.  相似文献   

9.
10.
《The Journal of cell biology》1994,125(6):1225-1237
We have compared the intracellular transport and subcellular distribution of MHC class II-invariant chain complexes in a wild-type HLA-DR3 homozygous cell line and a mutant cell line, T2.DR3. The latter has a defect in antigen processing and accumulates HLA-DR3 molecules associated with an invariant chain-derived peptide (CLIP) rather than the normal complement of peptides derived from endocytosed proteins. We find that in the wild-type cells, CLIP is transiently associated with HLA-DR3 molecules, suggesting that the peptide is a normal class II- associated intermediate generated during proteolysis of the invariant chain. In the mutant cell line proteolysis of the invariant chain is less efficient, and HLA-DR3/CLIP complexes are generated much more slowly. Examination of the mutant cell line by immunoelectronmicroscopy shows that class II-invariant chain complexes accumulate intracellularly in large acidic vesicles which contain lysosomal markers, including beta-hexosaminidase, cathepsin D, and the lysosomal membrane protein CD63. The markers in these vesicles are identical to those seen in the class II-containing vesicles (MIICs) seen in the wild- type cells but the morphology is drastically different. The vesicles in the mutant cells are endocytic, as measured by the internalization of BSA-gold conjugates. The implication of these findings for antigen processing in general and the nature of the mutation in particular are discussed.  相似文献   

11.
12.
13.
The MHC class II invariant chain (Ii or CD74) in higher vertebrates is necessary for normal MHC class II loading in endosomal compartments. Detection of an Ii chain in fish would greatly support the idea that MHC class II function in fish and higher vertebrates is similar. Before this study only Ii homologues had been reported in fish that are unlikely to perform true Ii function. In the present study two Ii-like genes, Onmy-Iclp-1 and Onmy-Iclp-2, were detected in rainbow trout. Conservation of elements, particularly in Onmy-Iclp-1, suggests that the encoded proteins may be involved in MHC class II transport and peptide loading as is the Ii protein. The expression pattern of both rainbow trout genes was similar to that of the MHC class II beta chain, with strong expression in the lymphoid tissues, gills and intestine. Analysis of separated peripheral blood leucocyte fractions indicated that expression of Onmy-Iclp-1, Onmy-Iclp-2 and the MHC class II beta chain were all highest in B lymphocytes. This agrees with the expectation that the functions of the products of the new genes are closely associated with MHC class II. It is interesting why in rainbow trout there are two proteins that may function similar to Ii in higher vertebrates.  相似文献   

14.
15.
The quality control system in the secretory pathway can identify and eliminate misfolded proteins through endoplasmic reticulum-associated degradation (ERAD). ERAD is thought to occur by retrotranslocation through the Sec61 complex into the cytosol and degradation by the proteasome. However, the extent of disassembly of oligomeric proteins and unfolding of polypeptide chains that is required for retrotranslocation is not fully understood. In this report we used a glycosylation mutant of the p41 isoform of invariant chain (Ii) to evaluate the ability of ERAD to discriminate between correctly folded and misfolded subunits in an oligomeric complex. We show that loss of glycosylation at position 239 of p41 does not detectably affect Ii trimerization or association with class II but does result in a defect in endoplasmic reticulum export of Ii that ultimately leads to its degradation via the ERAD pathway. Although class II associated with the mutated form of p41 is initially retained in the endoplasmic reticulum, it is subsequently released and traffics through the Golgi to the plasma membrane. ERAD-mediated degradation of the mutant p41 is dependent on mannose trimming and inhibition of mannosidase I stabilizes Ii. Interestingly, inhibition of mannosidase I also results in prolonged association between the mutant Ii and class II, indicating that complex disassembly and release of class II is linked to mannosidase-dependent ERAD targeting of the misfolded Ii. These results suggest that the ERAD machinery can induce subunit disassembly, specifically targeting misfolded subunits to degradation and sparing properly folded subunits for reassembly and/or export.  相似文献   

16.
The publications on the structural and functional features of the main molecular shaperon of li-chain were updated. In the 1990s the determination of molecular shaperon as a group of mutually unrelated protein molecules taking part in the assembly of other polypeptides was worked out. In humans the main isoform of li-chain is the protein with a mol. wt. of 31-33 kD. A great variety of functions of this shaperon is linked with definite amino acid sequences. In particular, the molecular shaperon of the molecules of the main histocompatibility complex-II has functions connected with the presentation of antigen and the differentiation of B lymphocytes.  相似文献   

17.
The p41 splice variant of major histocompatibility complex (MHC) class II-associated invariant chain (Ii) contains a 65 aa segment that binds to the active site of cathepsin L (CatL), a lysosomal cysteine protease involved in MHC class II-restricted antigen presentation. This segment is absent from the predominant form of Ii, p31. Here we document the in vivo significance of the p41-CatL interaction. By biochemical means and electron microscopy, we demonstrate that the levels of active CatL are strongly reduced in bone marrow-derived antigen-presenting cells that lack p41. This defect mainly concerns the mature two-chain forms of CatL, which depend on p41 to be expressed at wild-type levels. Indeed, pulse-chase analysis suggests that these mature forms of CatL are degraded by endocytic proteases when p41 is absent. We conclude that p41 is required for activity of CatL by stabilizing the mature forms of the enzyme. This suggests that p41 is not merely an inhibitor of CatL enzymatic activity, but serves as a chaperone to help maintain a pool of mature enzyme in late-endocytic compartments of antigen-presenting cells.  相似文献   

18.
Invariant chain (Ii) has been shown to play a significant part in the assembly of MHC class II molecules. Ii also binds to MHC class I, although it is not known when this first occurs or whether it can affect class I assembly. Our examination of lysates of L(d)-transfected T2 cells showed that Ii bound intracellularly to folded, but not to open, forms of MHC class I. Furthermore, addition of peptides to the lysates dissociated Ii from the Ii-folded MHC class I complex. Thus, unlike other known chaperones, Ii associates only with folded, peptide-free class I molecules. To determine whether Ii can affect MHC class I transport and surface expression, we used both wild-type Ii and a mutant Ii that lacked the endosomal targeting sequence. Neither Ii nor Ii(Delta 20) increased the rate of MHC class I migration; however, Ii and (to a greater extent) Ii(Delta 20) increased cell surface expression of MHC class I. In HeLa cells, this effect was allele-specific, affecting HLA-A28 more than -B75. Ii also increased the surface expression of K(b) more than D(b) on Panc02 pancreatic adenocarcinoma cells. Neither form of Ii was detectable at the cell surface with MHC class I, indicating that Ii had exercised its effect on class I intracellularly. In total, these data suggest that Ii can bind peptide-free folded class I/beta(2)m heterodimers, but not open MHC class I heavy chains, in the endoplasmic reticulum, and that Ii can facilitate the surface expression of the MHC class I molecule.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号