首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 611 毫秒
1.
Fibrosarcoma (FS) of bone is an extremely rare and genetically uncharacterised malignant tumour arising in the skeleton. On the basis of clinicopathologic features it appears to be closely related to either fibroblastic osteosarcoma (OS) or malignant fibrous histiocytoma (MFH) of bone. In this study, 27 decalcified, paraffin-embedded FS of bone were collected for genetic and immunohistochemical characterisation. Good quality DNA, suitable for genetic analyses, was isolated from nine cases (7 primary tumours, 1 local recurrence, and 1 lung metastasis), which were analysed by comparative genomic hybridisation (CGH) on chromosomes and DNA microarrays. DNA sequence copy number changes were found in five out of seven primary tumours (72%), as well as in both, the local recurrence and the metastatic lesion, by CGH on chromosomes. The most frequent aberration was gain of the chromosomal region 22q, which was present in four out of the five primary tumours with genetic changes, in the local recurrence and, as the sole genetic aberration, in the lung metastasis. DNA microarray analysis showed that gain of the platelet-derived growth factor beta (PDGF-B) gene (located at 22q12.3-q13.1) was the most frequent gene imbalance, which was present in three out of the five analysed tumours. In these three cases, real-time PCR revealed a 2.1- to 2.7-fold increase of PDGF-B gene copy numbers. By immunohistochemistry, a positive reaction for B-chain-containing PDGF proteins was revealed in all the cases showing gain of 22q. A more extensive immunohistochemical analysis identified the presence of PDGF-B proteins in 8/20 primary FS of bone (40%), 3/3 lung metastases and in 1/2 local recurrences. A simultaneous positive reaction for PDGF-B proteins and PDGF receptors was found in two third of PDGF-B-positive cases (8/12). Taken together, the genetic and immunohistochemical data indicate that over-representation of the chromosomal region 22q, including particularly the PDGF-B gene, may be important for the pathogenesis of FS of bone. Our results also demonstrate that CGH on chromosomes and DNA microarrays are suitable for the genetic characterisation of decalcified, paraffin-embedded tumour tissue samples and may facilitate, combined with other techniques, the rapid acquisition of data providing insight into the molecular genetic and biologic basis of rare bone sarcomas. Moreover, these findings suggest the possible presence of an autocrine loop in FS of bone, which might be taken into account for planning innovative therapeutic strategies for patients unresponsive to conventional treatments.  相似文献   

2.
Microarray technology for the detection of putative pathological submicroscopic copy number variants (CNV) has become a standard tool in the field of molecular cytogenetics in recent years. In addition to the identification of somatic CNVs in tumour genetics this technology is increasingly used for the analysis of constitutional CNVs in patients with developmental delay. Array-based genomic hybridisation increases sensitivity in comparison to more conventional technologies such as comparative genomic hybridisation (CGH). Recent developments now allow a genome-wide detection of submicroscopic chromosomal alterations, deletions and duplications smaller than 100 Kb, thus significantly increasing the detection rate of chromosomal aberrations in patients suffering from idiopathic mental retardation. Several centers are already using array technology in their routine setting in the diagnostic approach to syndromes. Therefore, this overview focuses on the similarities, as well as the differences, of several basic array techniques.  相似文献   

3.
The majority of human cancers as well as many developmental abnormalities harbour chromosomal imbalances, many of which result in the gain and/or loss of genomic material. Conventional comparative genomic hybridisation (CGH) has been used extensively to map DNA copy number changes to chromosomal positions. The introduction of microarray CGH provided a powerful tool to precisely detect and quantify genomic aberrations and map these directly onto the sequence of the human genome. In the past several years, a number of different approaches towards array-based CGH have been undertaken. This paper reviews these approaches and presents some of the recently-developed applications of this new technology in both research and clinical settings.  相似文献   

4.

Background  

Microarray-based comparative genomic hybridisation (array CGH) is a technique by which variation in relative copy numbers between two genomes can be analysed by competitive hybridisation to DNA microarrays. This technology has most commonly been used to detect chromosomal amplifications and deletions in cancer. Dedicated tools are needed to analyse the results of such experiments, which include appropriate visualisation, and to take into consideration the physical relation in the genome between the probes on the array.  相似文献   

5.
6.
Gain in 1q is a common abnormality in phyllodes tumours of the breast.   总被引:4,自引:0,他引:4  
We studied DNA copy number changes by CGH and allelic imbalance (AI) on 3p by LOH analysis on 22 phyllodes tumours (PT) of the breast in order to gain insight into the genetic basis of tumour progression in PT. Copy number changes were observed in 14 cases (63%). Gain in 1q with 1q21-23 as the minimal overlapping area was seen in 12 cases (55%). The gain was observed both in benign and malignant tumours. Our study did not reveal any DNA copy number changes or allelic loss on 3p. The results suggest that DNA copy number changes are not associated with the histological grade or clinical behaviour of PT and the chromosomal changes on 3p appear to be rare. Colour figure can be viewed on http://www.esacp.org/acp/2003/25-2/jee.htm  相似文献   

7.
The technique of comparative genomic hybridisation (CGH) has until recently been used to screen for common genomic abnormalities in fresh tumour material; it has identified previously unrecognised regions of amplification associated with poor prognosis subtypes of breast cancer and lymphoma. Our group has applied this technique to resistant cell lines and their sensitive counterparts in order to define chromosomal abnormalities associated with acquired drug resistance. We have demonstrated the applicability of this technique to the study of drug resistance using cell lines with known mechanisms of resistance. The ability to detect novel genomic alterations in cell lines with novel mechanisms of resistance was also demonstrated. We subsequently examined the CGH profiles of seven different cell lines made resistant to three platinum analogues and showed the most consistent abnormalities to involve over-representation of regions 4q and 6q. More recently, we have applied the CGH technique to a series of testicular germ cell tumours (TGCTs) collected as formalin-fixed paraffin-embedded biopsy specimens from patients, both pre- and post-therapy using a platinum-based regimen (POMB/ACE). Previous reports have shown over-representation of X, 7q, 8q and 12p and loss of 13q to occur in 25% of primary TGCTs. Over-representation of 12p was confirmed in the majority of these biopsy samples; deletion of 13q was noted in the initial biopsies of several patients. We also demonstrated alterations of 4p, 4q, 5q and 6q in this series of patients. Newly acquired deletions of 2q and 18q and amplifications of 8q were frequently observed in post-chemotherapy samples from resistant tumours. The CGH studies on these patients with TGCT will not only enable us to correlate our observations on clinical material with those from long-term cell lines, but should also identify sites of key genes involved in clinical platinum resistance.  相似文献   

8.
Comparative Genomic Hybridization (CGH) is a molecular cytogenetic method for detecting chromosomal imbalances by comparing the copy number of DNA sequences in cells of tested tissue and the reference specimen. CGH is based on two-color fluorescence suppressive in situ hybridization of genomic test and reference DNAs, each labeled with a different fluorochrome, to metaphase chromosomes of a healthy individual. First described by Kallioniemi et al. in 1992, the CGH assay has been widely used for identification and characterization of both numerical and unbalanced structural chromosome abnormalities in cells of different tissues at various pathological conditions in humans, especially in tumor diseases. We discuss the specific features and quality control of comparative genomic hybridization, its advantages and limitations in detection of genomic imbalance and the prospects for development of this technology.  相似文献   

9.
The 22q11 deletion syndrome (22q11DS) is a developmental syndrome comprising of heart, palate, thymus and parathyroid glands defects. Individuals with 22q11DS usually carry a 1.5- to 3-Mb heterozygous deletion on chromosome 22q11.2. However, there are many patients with features of 22q11DS without a known cause from conventional karyotype and FISH analysis. Six patients with features of 22q11DS, a normal chromosomal and FISH 22q11 analysis, were selected for investigation by microarray genomic comparative hybridisation (array CGH). Array-CGH is a powerful technology enabling detection of submicroscopic chromosome duplications and deletions by comparing a differentially labelled test sample to a control. The samples are co-hybridised to a microarray containing genomic clones and the resulting ratio of fluorescence intensities on each array element is proportional to the DNA copy number difference. No chromosomal changes were detected by hybridisation to a high resolution array representing chromosome 22q. However, one patient was found to have a 6-Mb deletion on 5q11.2 detected by a whole genome 1-Mb array. This deletion was confirmed with fluorescence in-situ hybridisation (FISH) and microsatellite marker analysis. It is the first deletion described in this region. The patient had tetralogy of Fallot, a bifid uvula and velopharyngeal insufficiency, short stature, learning and behavioural difficulties. This case shows the increased sensitivity of array CGH over detailed karyotype analysis for detection of chromosomal changes. It is anticipated that array CGH will improve the clinicians capacity to diagnose congenital syndromes with an unknown aetiology.  相似文献   

10.
A comprehensive genomic analysis of single cells is instrumental for numerous applications in tumor genetics, clinical diagnostics and forensic analyses. Here, we provide a protocol for single-cell isolation and whole genome amplification, which includes the following stages: preparation of single-cell suspensions from blood or bone marrow samples and cancer cell lines; their characterization on the basis of morphology, interphase fluorescent in situ hybridization pattern and antibody staining; isolation of single cells by either laser microdissection or micromanipulation; and unbiased amplification of single-cell genomes by either linker-adaptor PCR or GenomePlex library technology. This protocol provides a suitable template to screen for chromosomal copy number changes by conventional comparative genomic hybridization (CGH) or array CGH. Expected results include the generation of several micrograms of DNA from single cells, which can be used for CGH or other analyses, such as sequencing. Using linker-adaptor PCR or GenomePlex library technology, the protocol takes 72 or 30 h, respectively.  相似文献   

11.

Background

Malignant fibrous histiocytomas (MFHs), or undifferentiated pleomorphic sarcomas, are in general high-grade tumours with extensive chromosomal aberrations. In order to identify recurrent chromosomal regions of gain and loss, as well as novel gene targets of potential importance for MFH development and/or progression, we have analysed DNA copy number changes in 33 MFHs using microarray-based comparative genomic hybridisation (array CGH).

Principal findings

In general, the tumours showed numerous gains and losses of large chromosomal regions. The most frequent minimal recurrent regions of gain were 1p33-p32.3, 1p31.3-p31.2 and 1p21.3 (all gained in 58% of the samples), as well as 1q21.2-q21.3 and 20q13.2 (both 55%). The most frequent minimal recurrent regions of loss were 10q25.3-q26.11, 13q13.3-q14.2 and 13q14.3-q21.1 (all lost in 64% of the samples), as well as 2q36.3-q37.2 (61%), 1q41 (55%) and 16q12.1-q12.2 (52%). Statistical analyses revealed that gain of 1p33-p32.3 and 1p21.3 was significantly associated with better patient survival (P = 0.021 and 0.046, respectively). Comparison with similar array CGH data from 44 leiomyosarcomas identified seven chromosomal regions; 1p36.32-p35.2, 1p21.3-p21.1, 1q32.1-q42.13, 2q14.1-q22.2, 4q33-q34.3, 6p25.1-p21.32 and 7p22.3-p13, which were significantly different in copy number between the MFHs and leiomyosarcomas.

Conclusions

A number of recurrent regions of gain and loss have been identified, some of which were associated with better patient survival. Several specific chromosomal regions with significant differences in copy number between MFHs and leiomyosarcomas were identified, and these aberrations may be used as additional tools for the differential diagnosis of MFHs and leiomyosarcomas.  相似文献   

12.
Chromosomal imbalances such as deletions and amplifications are common rearrangements in most tumors. Specific rearrangements are consistently associated with specific tumor types or stages, implicating the role of the genes in a region of chromosomal imbalance in tumor initiation and progression. The development of comparative genomic hybridization (CGH) has obviated the need to obtain metaphase spreads from tumors, so that the chromosomal imbalances in many solid tumors may be revealed using an extracted genomic DNA sample. However, the resolution of the cytogenetic method remains and the extreme technical difficulty of CGH has restricted its use. Conceptually, DNA microarray-based CGH is an obvious solution to all of the limitations of conventional CGH. Although arrays have been used for CGH studies, their success has been limited by poor specific signal-to-noise ratios. Here we demonstrate a microarray-based CGH method that allows reliable detection of chromosomal deletions and amplifications with high resolution. Our microarray system is fundamentally different from most current microarray technologies in that activated DNA is printed on natural glass surfaces while other systems almost exclusively focus on activating the surfaces, a strategy that invariably introduces hybridization backgrounds. The concept of using pre-modification may be generally applied for making arrays of other biological materials, as modifying the substrates will be more controllable in solution than on surfaces.  相似文献   

13.
Towards a genetic-based classification of human lung cancer.   总被引:4,自引:0,他引:4  
Lung cancer is a highly aggressive neoplasm which is reflected by a multitude of genetic aberrations being detectable on the chromosomal and molecular level. In order to understand this seemingly genetic chaos, we performed Comparative Genomic Hybridisation (CGH) in a large collective of human lung carcinomas investigating different tumor entities as well as multiple individual tumour specimens of single patients. Despite the considerable genetic instability being reflected by the well known morphological heterogeneity of lung cancer the comparison of different tumour groups using custom made computer software revealed recurrent aberration patterns and highlighted chromosomal imbalances that were significantly associated with morphological histotypes and biological phenotypes. Specifically we identified imbalances in NSCLC being associated with metastasis formation which are typically present in SCLC thus explaining why the latter is such an aggressive neoplasm characterized by widespread tumor dissemination. Based on the genetic data a new model for the development of SCLC is presented. It suggests that SCLC evolving from the same stem cell as NSCLC should be differentiated into primary and secondary tumors. Primary SCLC corresponding to the classical type evolved directly from an epithelial precursor cell. In contrast, secondary SCLC correlating with the combined SCLC develops via an NSCLC intermediate. In addition, we established libraries of differentially expressed genes from different human lung cancer types to identify new candidate genes for several of the chromosomal subregions identified by CGH. In this review, we summarise the status of our results aiming at a refined classification of lung cancer based on the pattern of genetic aberrations.  相似文献   

14.
Deletion of the CDKN2A locus at 9p21.3 has been reported to be a poor prognostic sign in the Ewing sarcoma family of tumours. In clinical applications CDKN2A deletion is primarily detected using fluorescent in situ hybridisation (FISH) with a commercial probe, size approximately 190 kb. Due to limitations in resolution, FISH analysis may fail to detect microdeletions smaller than 190 kb. In the present study, we performed 44K array comparative genomic hybridisation (CGH) on eleven Ewing sarcoma cell lines and 26 tissue samples in order to define the sizes of 9p21.3 deletions. Microarray CGH analysis revealed 9p21.3 deletions encompassing the CDKN2A locus in eight cell lines (73%) and in six tumours (23%). In four cases (two cell lines and two tissue samples) the deletion was less than 190 kb in size. In one cell line sample, we detected a microdeletion of approximately 58 kb in 9p21.3 harbouring the CDKN2A locus. We confirmed this result using 244K microarray CGH and TaqMan quantitative RT-PCR analysis and further performed FISH analysis on this cell line sample. Here, we show that CDKN2A FISH analysis can give false negative results in cases with small microdeletions. Our results suggest that new and more accurate FISH methods should be developed for detection of deletions in the CDKN2A locus.  相似文献   

15.
A widely held belief today is that genomics really only started with the DNA sequence information emanating from the genome programs for various organisms, with the human genome playing the leading role. In fact there is a discernable trail stretching for more than a 100 years from the observations of Boveri on tissue instability involving polyploidy in sea urchin embryos and human tumours to the present day. This historical review follows that trail and shows that many theoretical and technical advantages taken for granted in today's genomics era rely heavily on earlier cytogenetic and gene mapping discoveries. Three specific examples of technical developmental paths involving in situ hybridisation, flow-sorting and DNA reassociation kinetics will be explored. In the mid-1980s the two former approaches merged to give rise to several applications of which chromosome painting and chromosome CGH are arguably the most important. The latter developed into array CGH which has now become the pre-eminent method for detecting micro-imbalances in a large number of targets. A competing emerging technology is that of genome-wide SNP typing, which itself is a product of the much earlier RFLP approach linked to DNA sequence information. Do such approaches spell the final demise of the microscope? Perhaps for narrowly defined activities this may occur, but for addressing general questions, microscopic examination will remain pre-eminent.  相似文献   

16.
Kearney L  Horsley SW 《Chromosoma》2005,114(4):286-294
Cytogenetics has played a pivotal role in haematological malignancy, both as an aid to diagnosis and in identifying recurrent chromosomal rearrangements, an essential prerequisite to identifying genes involved in leukaemia and lymphoma pathogenesis. In the late 1980s, a series of technologies based around fluorescence in situ hybridisation (FISH) revolutionised the field. Interphase FISH, multiplex-FISH (M-FISH, SKY) and comparative genomic hybridisation (CGH) have emerged as the most significant of these. More recently, microarray technologies have come to prominence. In the acute leukaemias, the finding of characteristic gene expression signatures corresponding to biological subgroups has heralded gene expression profiling as a possible future alternative to current cytogenetic and morphological methods for diagnosis. In the lymphomas, high-resolution array CGH has successfully identified new regions of deletion and amplification, providing the prospect of disease-specific arrays. Review related to the 15th International Chromosome Conference (ICC XV), held in September 2004, Brunel University, London, UK  相似文献   

17.
18.
The application of DNA microarrays in gene expression analysis   总被引:23,自引:0,他引:23  
DNA microarray technology is a new and powerful technology that will substantially increase the speed of molecular biological research. This paper gives a survey of DNA microarray technology and its use in gene expression studies. The technical aspects and their potential improvements are discussed. These comprise array manufacturing and design, array hybridisation, scanning, and data handling. Furthermore, it is discussed how DNA microarrays can be applied in the working fields of: safety, functionality and health of food and gene discovery and pathway engineering in plants.  相似文献   

19.
Insulinomas represent the predominant syndromic subtype of endocrine pancreatic tumors (EPTs). Their metastatic potential cannot be predicted reliably using histopathological criteria. In the past few years, several attempts have been made to identify prognostic markers, among them TP53 mutations and immunostaining of p53 and recently cytokeratin 19 (CK19). In a previous study using conventional comparative genomic hybridization (CGH) we have shown that chromosomal instability (CIN) is associated with metastatic disease in insulinomas. It was our aim to evaluate these potential parameters in a single study. For the determination of CIN, we applied CGH to microarrays because it allows a high-resolution detection of DNA copy number changes in comparison with conventional CGH as well as the analysis of chromosomal regions close to the centromeres and telomeres, and at 1pter-->p32, 16p, 19 and 22. These regions are usually excluded from conventional CGH analysis, because they may show DNA gains in negative control hybridizations. Array CGH analysis of 30 insulinomas (15 tumors of benign, eight tumors of uncertain and seven tumors of malignant behavior) revealed that >or=20 chromosomal alterations and >or=6 telomeric losses were the best predictors of malignant progression. A subset of 22 insulinomas was further investigated for TP53 exon 5-8 gene mutations, and p53 and CK19 expression. Only one malignant tumor was shown to harbor an arginine 273 serine mutation and immunopositivity for p53. CK19 immunopositivity was detected in three malignant tumors and one tumor with uncertain behavior. In conclusion, our results indicate that CIN as well as telomeric loss are very powerful indicators for malignant progression in sporadic insulinomas. Our data do not support a critical role for p53 and CK19 as molecular parameters for this purpose.  相似文献   

20.

Background  

Array CGH (Comparative Genomic Hybridisation) is a molecular cytogenetic technique for the genome wide detection of chromosomal imbalances. It is based on the co-hybridisation of differentially labelled test and reference DNA onto arrays of genomic BAC clones, cDNAs or oligonucleotides, and after correction for various intervening variables, loss or gain in the test DNA can be indicated from spots showing aberrant signal intensity ratios.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号