首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 243 毫秒
1.
2.
3.
4.
Ro S  Song R  Park C  Zheng H  Sanders KM  Yan W 《RNA (New York, N.Y.)》2007,13(12):2366-2380
Small noncoding RNAs have been suggested to play important roles in the regulation of gene expression across all species from plants to humans. To identify small RNAs expressed by the ovary, we generated mouse ovarian small RNA complementary DNA (srcDNA) libraries and sequenced 800 srcDNA clones. We identified 236 small RNAs including 122 microRNAs (miRNAs), 79 piwi-interacting RNAs (piRNAs), and 35 small nucleolar RNAs (snoRNAs). Among these small RNAs, 15 miRNAs, 74 piRNAs, and 21 snoRNAs are novel. Approximately 70% of the ovarian piRNAs are encoded by multicopy genes located within the repetitive regions, resembling previously identified repeat-associated small interference RNAs (rasiRNAs), whereas the remaining approximately 30% of piRNA genes are located in nonrepetitive regions of the genome with characteristics similar to the majority of piRNAs originally cloned from the testis. Since these two types of piRNAs display different structural features, we categorized them into two classes: repeat-associated piRNAs (rapiRNAs, equivalent of the rasiRNAs) and non-repeat-associated piRNAs (napiRNAs). Expression profiling analyses revealed that ovarian miRNAs were either ubiquitously expressed in multiple tissues or preferentially expressed in a few tissues including the ovary. Ovaries appear to express more rapiRNAs than napiRNAs, and sequence analyses support that both may be generated through the "ping-pong" mechanism. Unique expression and structural features of these ovarian small noncoding RNAs suggest that they may play important roles in the control of folliculogenesis and female fertility.  相似文献   

5.
MiRNAs are a newly discovered class of small noncoding RNAs that regulate gene expression by translational repression and mRNA degradation. It has become evident that miRNAs are involved in many important biological processes, including tissue differentiation and development. The role of miRNAs in the eye is beginning to be explored following their recent detection by miRNA expression analyses. Many of the target genes for these ocular miRNAs remain undefined. This review summarizes the current information about ocular miRNA expression. Future research should focus on the function of ocular miRNAs in eye development.  相似文献   

6.
microRNA(miRNA)是一类长度为22nt左右的单链非编码小RNA分子,通过与靶mRNA分子结合而沉默其表达.目前,虽然在多种生物中发现了大量的miRNA,但对它们的功能还知之甚少.为了深入研究miRNA的功能,构建了一个包括170多种人源miRNA表达载体的miRNA分子表达库,并对部分表达载体采用RNA印迹及双荧光素酶分析技术进行验证.实验证明:这些miRNA表达载体在HEK-293细胞内可以高水平表达miRNA前体和成熟的miRNA,并且能抑制含有相应靶位点的报告基因的表达.这些结果表明:该miRNA表达库可以表达功能miRNA,并可用于miRNA功能的筛选和研究.  相似文献   

7.
The gene organization of small nucleolar RNAs (snoRNAs) and microRNAs (miRNAs) varies within and among different organisms. This diversity is reflected in the maturation pathways of these small noncoding RNAs (ncRNAs). The presence of noncoding RNAs in introns has implications for the biogenesis of both mature small RNAs and host mRNA. The balance of the interactions between the processing or ribonucleoprotein assembly of intronic noncoding RNAs and the splicing process can regulate the levels of ncRNA and host mRNA. The processing of snoRNAs - both intronic and non-intronic - is well characterised in yeast, plants and animals and provides a basis for examining how intronic plant miRNAs are processed.  相似文献   

8.
9.
Non-coding RNAs in Alzheimer's Disease   总被引:1,自引:0,他引:1  
  相似文献   

10.
11.
miRNA的研究进展   总被引:4,自引:0,他引:4  
近来,人类发现了一些不同种类的小RNA分子,其中miRNA是人类新发现的一类小RNA,它在进化上具有保守性,在数量、序列、结构、表达和功能上具有多样性.目前,大约已发现了100多种miRNA,它们存在于不同的生物中,从四膜虫、线虫、植物、动物到人都已发现了不同的miRNA.miRNA的主要功能是调节内源基因表达,它在基因活动调控网络中扮演了重要的角色.miRNA与siRNA关系密切,它们既具有相似性,又具有差异性.小RNA分子研究将是今后分子生物学的研究热点之一.  相似文献   

12.
miRNA是一类具有调节功能的非编码小分子RNA,参与调节多种细胞功能。涡虫具有强大的再生能力,逐渐成为干细胞功能和再生研究的良好的动物模型。本文对miRNA在动物再生中的功能,尤其是miRNA与涡虫再生的关系进行综述。  相似文献   

13.
14.
Profiling microRNA expression using sensitive cDNA probes and filter arrays   总被引:6,自引:0,他引:6  
Sioud M  Røsok O 《BioTechniques》2004,37(4):574-6, 578-80
MicroRNAs (miRNAs) are small noncoding RNAs (approximately 22 nucleotides) that have recently emerged as important regulators of gene expression in both plants and animals. With few exceptions, however, the target genes and the expression levels of most miRNAs are unknown. Here we show that direct random-primed cDNA synthesis on either chemically synthesized small RNAs (21-22 nucleotides) or gel-purified mature miRNAs from human cells can produce specific and sensitive full-length cDNA probes. Using oligonucleotide filter arrays, we demonstrate that the internally labeled cDNA probes are sensitive for detecting differential miRNA expression between untreated and O-tetradecanoylphorbol-13-acetate (TPA)-treated HL60 cells. The present study should facilitate a high-throughput analysis of miRNA expression between samples.  相似文献   

15.
16.
Shao P  Zhou H  Xiao ZD  He JH  Huang MB  Chen YQ  Qu LH 《Gene》2008,418(1-2):34-40
MicroRNAs (miRNAs) represent a family of small noncoding RNAs with important regulatory roles in diverse biological processes ranging from cell differentiation to organism development. In chickens, the full set of miRNAs and the expression patterns of miRNAs during development are still poorly understood when compared to the other vertebrates. In this study, we identified 29 novel miRNAs and 140 potential miRNA loci in the chicken genome by combining the experimental and computational analyses. Detailed expression patterns of 49 miRNAs were first characterized by Northern blotting and indicated the cooperativity of the miRNA expression with their function in embryogenesis and organogenesis. Twenty-seven miRNA clusters were systematically evaluated in the chicken genome and diverse expression patterns for closely linked miRNAs were observed. Our results significantly expand the set of known miRNAs in the chicken and provide the basis for understanding the structural and functional evolution of miRNA genes in vertebrates.  相似文献   

17.
Colorectal cancer (CRC) is one of the most frequently diagnosed digestive system cancer. The aim of the present study was to investigate the interactions among messenger RNAs (mRNAs), microRNAs (miRNAs), and long noncoding RNAs (lncRNAs) in CRC to reveal the mechanisms of CRC. Differentially expressed genes (DEGs) were identified from public gene expression data sets. One thousand eighty-one common dysregulated mRNAs in two data sets were identified. Gene function analysis and protein-protein interaction network analysis indicated that these DEGs might play important roles in CRC. LINC00365 was selected through coding- noncoding network analysis and its expression was validated upregulated in 22 paired clinical samples and four CRC cell lines. A competing endogenous RNA network composed of 70 miRNAs, nine mRNAs, and LINC00365 was constructed. Eight of nine mRNAs were validated upregulated in The Cancer Genome Atlas data set. Our results suggested that LINC00365 was an oncogene in CRC and it could regulate the expression of several mRNAs through sponging miRNAs.  相似文献   

18.
Marine Biotechnology - MicroRNAs (miRNAs) are small noncoding RNAs that regulate gene expression via the recognition of their target messenger RNAs. MiR-10a-3p plays an important role in the...  相似文献   

19.
The liver has the unique capacity to regenerate after surgical resection. However, the regulation of liver regeneration is not completely understood. Recent reports indicate an essential role for small noncoding microRNAs (miRNAs) in the regulation of hepatic development, carcinogenesis, and early regeneration. We hypothesized that miRNAs are critically involved in all phases of liver regeneration after partial hepatectomy. We performed miRNA microarray analyses after 70% partial hepatectomy in rats under isoflurane anesthesia at different time points (0 h to 5 days) and after sham laparotomy. Putative targets of differentially expressed miRNAs were determined using a bioinformatic approach. Two-dimensional (2D)-PAGE proteomic analyses and protein identification were performed on specimens at 0 and 24 h after resection. The temporal dynamics of liver regeneration were characterized by 5-bromo- 2-deoxyuridine, proliferating cell nuclear antigen, IL-6, and hepatocyte growth factor. We demonstrate that miRNA expression patterns changed during liver regeneration and that these changes were most evident during the peak of DNA replication at 24 h after resection. Expression of 13 miRNAs was significantly reduced 12-48 h after resection (>25% change), out of which downreguation was confirmed in isolated hepatocytes for 6 miRNAs at 24 h, whereas three miRNAs were significantly upregulated. Proteomic analysis revealed 65 upregulated proteins; among them, 23 represent putative targets of the differentially expressed miRNAs. We provide a temporal miRNA expression and proteomic dataset of the regenerating rat liver, which indicates a primary function for miRNA during the peak of DNA replication. These data will assist further functional studies on the role of miRNAs during liver regeneration.  相似文献   

20.
A novel method to monitor the expression of microRNAs   总被引:7,自引:0,他引:7  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号