首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Portia fimbriata , a web-invading, araneophagic salticid that uses aggressive mimicry to deceive its prey (web-building spiders), takes indirect routes to reach its prey (i.e. it makes detours). Data are presented from 18 instances of Portia making detours to reach prey in nature, the prey being five different species of web-building spiders. Portia spent 17 min (median) per predatory sequence with the prey out of view and covered 375 mm detouringper sequence. These detours were longer and more complex than those previously recorded for salticids, and these are the first detailed records of detouring behaviour by a salticid in the field.  相似文献   

2.
Abstract

Portia is a behaviourally complex and aberrant salticid genus. The genus is of unusual importance because it is morphologically primitive. Five species were studied in nature (Australia, Kenya, Malaysia, Sri Lanka) and in the laboratory in an effort to clarify the origins of the salticids and of their unique, complex eyes. All the species of Portia studied were both web builders and cursorial. Portia was also an araneophagic web invader, and it was a highly effective predator on diverse types of alien webs. Portia was an aggressive mimic, using a complex repertoire of vibratory behaviour to deceive the host spiders on which it fed. The venom of Portia was unusually potent to other spiders; its easily autotomised legs may have helped Portia escape if attacked by its frequently dangerous prey. Portia was also kleptoparasitic and oophagic when occupying alien webs. P. fimbriata from Queensland, where cursorial salticids were superabundant, used a unique manner of stalking and capturing other salticids. The display repertoires used during intraspecific interactions were complex and varied between species. Both visual (typical of other salticids) and vibratory (typical of other web spiders) displays were used. Portia copulated both on and away from webs and frequently with the female hanging from a dragline. Males cohabited with subadult females on webs, mating after the female matured. Adult and subadult females sometimes used specialised predatory attacks against courting or mating males. Sperm induction in Portia was similar to that in other cursorial spiders. Portia mimicked detritus in shape and colour, and its slow, mechanical locomotion preserved concealment. Portia occasionally used a special defensive behaviour (wild leaping) if disturbed by a potential predator. Two types of webs were spun by all species (Type 1, small resting platforms; Type 2, large prey-capture webs). Two types of egg sacs were made, both of which were highly aberrant for a salticid. Responses of different species and both sexes of Portia were quantitatively compared for different types of prey. Many of the trends in behaviour within the genus, including quantitative differences in predatory behaviour, seemed to be related to differences in the effectiveness of the cryptic morphology of Portia in concealing the spider in its natural habitat (‘effective crypsis’). The results of the study supported, in general, Jackson & Blest’s (1982a) hypothesis of salticid evolution which, in part, proposes that salticid ancestors were web builders with poorly developed vision and that acute vision evolved in conjunction with the ancestral spiders becoming proficient as araneophagic invaders of diverse types of webs.  相似文献   

3.
Abstract

Taieria erebus (Gnaphosidae) was found to be a versatile predator: it captured insects both cursorially (away from webs) and kleptopar-asitically (on alien webs); it captured spiders in both the presence and absence of webs; and it also ate the eggs of host spiders (oophagy). When T. erebus invaded webs, it was as an aggressive mimic — it performed a repertoire of vibratory behaviours to lure the host spider. Although T. erebus pursued and captured spiders on diverse web-types, it was more effective as a predator when invading densely (rather than sparsely) woven cribellate and non-sticky webs, and was especially effective on non-cribellate sticky webs. Gnaphosids are traditionally referred to as hunting spiders, but T. erebus built a small prey-capture web. T. erebus also preyed on segestriid spiders, then used their webs to catch more prey, this being an unusual example of a spider using, as a tool for predation, the spinning-work of another species from an unrelated family. T. erebus used specialised behaviours to prey on nesting cursorial spiders. Prey was either grasped or stabbed; the venom of T. erebus was highly potent against spiders. Experiments indicated that vision was of little or no importance in the predatory behaviour of T. erebus. The behaviour of T. erebus is compared to that of Portia, a web-building salticid spider which is very versatile in its predatory behaviour and has acute vision. T. erebus is discussed in relation to hypotheses concerning gnaphosid and salticid evolution.  相似文献   

4.
Psilochorus sphaeroides from Queensland, Australia and Smeringopus pallidus from Sri Lanka are long-legged, web-building pholcid spiders with a special defence behaviour, whirling. The efficiency of whirling as a defence against web-invading jumping spiders (Salticidae) was examined in the laboratory. Three salticid species were used in these tests- Euryattus sp., Portia fimbriata and Portia labiata. Euryattus leapt into webs, but Portia fimbriata and Portia labiata walked slowly into webs and practised aggressive mimicry. Portia fimbriata was more consistent at using aggressive mimicry and more efficient at capturing Psilochorus sphaeroides and Smeringopus pallidus than was Portia labiata . Both species of Portia were more efficient at catching pholcids than was Euryattus. Portia , especially Portia fimbriata , was less inclined than Euryattus to stimulate pholcids to whirl. In an experiment in which pholcids were artificially induced to whirl whenever a salticid was near, salticids never captured pholcids, providing additional evidence that whirling is an effective defence of Psilochorus sphaeroides and Smeringopus pallidus against web-invaders. Results from this study are compared to those from a study of another pholcid that whirls, Pholcus phalangioides .  相似文献   

5.
Predatory versatility occurs in Pholcus phalangioides (Fuesslin). In addition to building prey-catching space webs, P. phalangioides invades webs of other spiders and feeds on the occupants. It acts as an aggressive mimic by performing specialized vibratory behaviours to which the prey-spider responds as it normally would to its own prey. Prey (spiders and insects) is attacked by wrapping. Prey that trips over lines at the edge of a web of P. phalangioides , but fails to enter the web, is successfully attacked: P. phalangioides leans out of its web to throw silk over the prey, keeping as few as two legs on the silk. However, P. phalangioides does not attack prey that is completely away from webs. Occasionally, P. phalangioides feeds on eggs of other spiders and on ensnared insects it encounters in alien webs. Experimental evidence indicates that vision is of little or no importance in the predatory behaviour of P. phalangioides . Although P. phalangioides invades diverse types of webs, in addition to using its own web, its efficiency as a predator varies with web-type. It is most efficient as a predator of spiders and, especially, insects on its own web, and least efficient as a predator of amaurobiids on their cribellate sheet webs. Sensory, locomotory and other factors which influence differential predatory efficiency are discussed. The behaviour of P. phalangioides is compared to that of Portia , an araneophagic web-invading salticid, and the results of this study are discussed in relation to hypotheses concerning salticid evolution.  相似文献   

6.
Portia fimbriata from Queensland, a previously studied jumping spider (Salticidae), routinely includes web-building spiders and cursorial salticids in its diet, both of these types of prey being dangerous and unusual prey for a salticid. The present paper is the first detailed study ofP. fimbriata's prey preferences. Three basic types of tests of prey preference were used, providing evidence that (1)P. fimbriata males and females prefer spiders (both web-building spiders in webs and salticids away from webs) to insects; (2)P. fimbriata males and females prefer salticids to web-building spiders; (3)P. fimbriata males and females prefer larger spiders to smaller spiders; (4) there are intersexual differences in the preferences ofP. fimbriata for prey size, females preferring larger prey and males preferring smaller prey; and (5)P. fimbriata's prey preferences are not affected by a prior period without food of 2 weeks. When preferences were tested for by using both living, active prey and dead, motionless lures, the same preferences were expressed, indicating thatP. fimbriata can distinguish among different types of prey independent of the different movement patterns of different prey.  相似文献   

7.
What to attack is one of the most basic decisions predators must make, and these decisions are reliant upon the predator's sensory and cognitive capacity. Active choice of spiders as preferred prey, or araneophagy, has evolved in several distantly related spider families, including jumping spiders (Salticidae), but has never been demonstrated in ant-like jumping spiders. We used prey-choice tests with motionless lures to investigate prey-choice behaviour in Myrmarachne melanotarsa , an East African ant-like salticid that normally lives in aggregations and often associates with other spider species. We show that M . melanotarsa chooses spiders as prey in preference to insects and, furthermore, discriminates between different types of spiders. Myrmarachne melanotarsa 's preferred prey were juvenile hersiliids and its second most preferred were other salticids. To date, all documented examples of araneophagic salticids have been from the basal subfamily Spartaeinae. Myrmarachne melanotarsa is the first non-spartaeine and also the first ant-like salticid for which araneophagy has been demonstrated.  相似文献   

8.
The predatory behaviour of 31 species of Myrmarachne , ant-like salticids, was studied in the laboratory and the field. The ant-like morphology and locomotion of these spiders appears to function primarily in Batesian mimicry. No evidence was found of Myrmarachne feeding on ants. However, predatory sequences were found to differ considerably from those typical of salticids. Instead of stalking and leaping on prey, Myrmarachne lunged at prey from close range. Myrmarachne used its legs I to tap prey before lunging, another unusual behaviour for a salticid. Myrmarachne fed on a wide range of arthropod prey in nature and the laboratory, but appears to be especially efficient at catching moths. Also, Myrmarachne tends to open up, or enter into, other spiders' nests and eat other spiders' eggs. Myrmarachne males were less efficient than females, in laboratory tests, at catching various types of arthropod prey, but they appear to be as efficient as females at oophagy. Myrmarachne tend to use webs of other spiders as nest sites, but no evidence was found of Myrmarachne preying on spiders in webs. It appears that the unusual features of Myrmarachne's predatory and nesting behaviour are important in enabling these spiders to preserve their ant-like appearance.  相似文献   

9.
A range of web-invading jumping spiders with different predatory strategies was tested with A. appensa in the laboratory: Mimetus maculosus (Mimetidae), Pholcus phalangioides (Pholcidae), Taieria erebus (Gnaphosidae), and 11 species of salticids. Spiders that are known to specialize at web-invading, either by leaping into webs or by walking slowly into webs and practising aggressive mimicry, captured A. appensa ; three salticid species not known to be web-invaders never did. Web-invaders that practised aggressive mimicry were more efficient than were species that only leapt into webs. Portia fimbriata from Queensland was the most consistent at using aggressive mimicry and was also the most efficient at catching A. appensa . Web-invaders that were more efficient at catching A. appensa were also better able to avoid setting off pumping, a special defence behaviour used by A. appensa . Portia fimbriata from Queensland was especially efficient at avoiding setting off pumping: P. fimbriata more consistently than other Portia made its final approach toward A. appensa by coming down from above the web on a dragline and making minimal contact with the web. An experiment, in which A. appensa was artificially induced to pump whenever the predator was near, provided additional evidence that pumping is effective in defending A. appensa against web-invaders.  相似文献   

10.
Using a virtual spider robot, we studied hypotheses about the weaving behaviour of orb spiders. Our model spiders built virtual webs that mimicked perfectly the visual architecture of real webs of the garden cross spider Araneus diadematus. The matching of capture spiral and auxiliary spiral pitch was an apparently emergent property in both types of web. This validated our interpretation of the garden spider''s web-building decision rules, which use strictly local interactions with previously placed threads to generate global architecture.  相似文献   

11.
Portia is a genus of specialized web-invading salticids that use aggressive mimicry. Some other salticids leap into webs to catch spiders but do not use aggressive mimicry. Pholcus phalangioides is a web-building spider with a special defensive behaviour—called whirling—in which it swings its body around in a circle while keeping its long legs on the silk. Pholcus phalangioides is preyed on by Portia and probably other salticid spiders in nature. Interactions between P. phalangioides and 13 species of salticids were studied in the laboratory to compare how effective salticids with different styles of predation were at catching the pholcids. Four species of Portia were studied and each was more efficient at catching P. phalangioides than were the other nine salticids tested. For one species—Portia fimbriata—individuals from three different populations were studied. The Queensland P. fimbriata used aggressive mimicry more consistently and were more efficient at catching P. phalangioides than were the other species of Portia and the other populations of P. fimbriata . The salticids that were the most efficient at catching pholcids were also better able to avoid setting off whirling by the pholcids. An experiment in which pholcids were artificially induced to whirl whenever the predator was near provided additional evidence that whirling is an effective defence of pholcids against predation by salticids.  相似文献   

12.
Portia is a web-invading araneophagic spider that uses aggressive mimicry to deceive its prey. The present paper is a first step toward clarifying experimentally the cues that govern Portia's decisions of whether to enter a web, whether to make signals once in a web, and whether to persist at signalling once started. The following conclusions are supported: cues from seeing a web elicit web entry, but volatile chemical cues from webs of prey spiders are not important; seeing a spider in a web increases Portia's inclination to enter the web; after web entry, cues from webs of prey spiders are sufficient to elicit signalling behaviour, even in the absence of other cues coming directly from the prey spider; seeing a prey spider or detecting vibrations on the web make Portia more prone to signal, but volatile chemical cues from prey spiders are not important; once Portia is on a web and signalling, seeing a moving spider and detecting vibrations on the web encourage Portia to persist in signalling; on the basis of visual cues alone, Portia can distinguish between quiescent spiders, insects and eggsacs.  相似文献   

13.
We examined web-building spider species richness and abundance in forests across a deer density gradient to determine the effects of sika deer browsing on spiders among habitats and feeding guilds. Deer decreased the abundance of web-building spiders in understory vegetation but increased their abundance in the litter layer. Deer seemed to affect web-building spiders in the understory vegetation by reducing the number of sites for webs because vegetation complexity was positively correlated with spider density and negatively correlated with deer density. In contrast, the presence of vegetation just above the litter layer decreased the spider density, and deer exerted a negative effect on this vegetation, possibly resulting in an indirect positive effect on spider density. The vegetation just above the litter layer may be unsuitable as a scaffold for building webs if it is too flexible to serve as a reliable web support, and may even hinder spiders from building webs on litter. Alternatively, the negative effect of this vegetation on spiders in the litter may be as a result of reduced local prey availability under the leaves because of the reduced accessibility of aerial insects. The response to deer browsing on web-building spiders that inhabit the understory vegetation varied with feeding guild. Deer tended to affect web-invading spiders, which inhabit the webs of other spiders and steal prey, more heavily than other web-building spiders, probably because of the accumulated effects of habitat fragmentation through the trophic levels. Thus, the treatment of a particular higher-order taxon as a homogeneous group could result in misleading conclusions about the effects of mammalian herbivores.  相似文献   

14.
The behaviours used by Pholcus phalangioides (Fuesslin) (Araneae, Pholcidae) to evade its predators were studied with particular attention being given to a special defence behaviour, whirling. To whirl, this long-legged web-building spider swings its body around in a circle, with its legs remaining on the silk. Experiments were carried out to determine the types of stimuli that elicited whirling. Touching the spider or its web elicited whirling, as did air movement over the spider, but there was no evidence that chemical stimuli from potential predators were important. Small juveniles differed from adult females and larger juveniles by more often dropping from the web instead of whirling when confronted by a potential predator. Besides catching prey on its own web P. phalangioides invades other spiders' webs to catch the other spiders. By whirling in alien webs, P. phalangioides could deter attacks by the resident spider, but P. phalangioides was less inclined to whirl when in an alien than when in its own web.  相似文献   

15.
Prey captured by a predator may attract kleptoparasites which could significantly reduce the amount of food consumed. Stegodyphus lineatus, a cribellate spider, builds an energetically costly web. Ants raid the webs of S. lineatus to steal prey and behave as kleptoparasites. We investigated ant raids in a natural population of S. lineatus and their influence on the spider’s foraging behaviour. Considering spiders that had captured a prey, 31.2% suffered an ant raid within 24 h after the prey capture. Experimental tests showed that the response to ant raid is to delay web rebuilding and this was independent of a spider’s previous foraging success. There was a tendency for spiders that were exposed to ants to build larger webs. Neither prey-handling duration nor prey consumption was modified after exposure to ants. These results suggest that Stegodyphus lineatus adapt its web-building behaviour in response to the risk of kleptoparasitism.  相似文献   

16.
Abstract

The display and predatory behaviour of Tauala lepidus Wanless, an abundant salticid in north Queensland rainforests, was investigated in the laboratory and, to a lesser extent, in nature. T. lepidus leapt and walked into alien webs to catch spiders and insects, and was captured and fed on by other spiders. Females ate each other’s eggs. During intraspecific interactions, a complex repertoire of displays was used. Courtship versatility occurred, each individual male having a conditional strategy of different behaviours depending on whether the female is at or away from her nest, and whether she is adult or subadult. Yet other combinations of displays occurred during male-male and female-female interactions. Apparently, pheromones on nests and draglines of females released male courtship. Abdomen twitching, a behaviour common to the display repertoires of many salticids, was an especially complex and pervasive behaviour of T. lepidus. T. lepidus also twitched its abdomen when it contacted alien webs and preyed on other species of spiders. The behaviour of T. lepidus is compared to that of Jacksonoides queenslandica Wanless, a species from the same group (Astieae).  相似文献   

17.
Studies on spiders in their natural habitats are necessary for determining the full range of plasticity in their web-building behaviour. Plasticity in web design is hypothesised to be important for spiders building in habitats where environmental conditions cause considerable web damage. Here we compared web characteristics of the orb spider Metellina mengei (Araneae, Tetragnathidae) in two different forest habitats differing in their wind exposure. We found a notable lack of differences in web geometry, orientation and inclination between webs built along an exposed forest edge and those built inside the forest, despite marked differences in wind speed. This suggests that M. mengei did not exhibit web-building plasticity in response to wind in the field, contrasting with the findings of laboratory studies on other species of orb spiders. Instead, differences in prey capture and wind damage trade-offs between habitats may provide an explanation for our results, indicating that different species employ different strategies to cope with environmental constraints.  相似文献   

18.
Zygiella x-notata is an orb-weaving spider that often renews its trap daily. Web building has associated costs and benefits, and building successive webs may have consequences for lifetime reproductive success. In the laboratory, we tested the ability of Z. x-notata to modify its building behaviour in response to various stages in predation (prey detection, capture and ingestion) experienced with a previous web. We determined which stages provided information for the spiders. Spiders that detected, captured and ingested prey and then rebuilt their web used less silk and made a smaller capture area than in the previous web. There was no effect of prey detection alone on the next web. Capture without feeding gave the same results as capture followed by feeding. The spiders that ate prey without detection and capture (feeding by hand) had the same energetic gains as spiders that caught prey but delayed building a new web. The spiders thus showed plasticity in web-building behaviour and in the amount of silk used (energetic investment) in the short term (from one web to the next). Changes in body condition may therefore influence web construction. Moreover, information gained during prey capture appeared to influence the size and structure of the next web. This ability should enable spiders to adapt their web building to maximize their fitness. Copyright 2000 The Association for the Study of Animal Behaviour.  相似文献   

19.
Webs of theridiid spiders: construction, structure and evolution   总被引:4,自引:0,他引:4  
Understanding the web construction behaviour of theridiid (comb-footed) spiders is fundamental to formulating specific evolutionary hypotheses and predictions regarding the reduction of orb-webs. We describe for the first time in detail the web construction behaviour of Achaearanea tepidariorum , Latrodectus geometricus , Theridion sisyphium and T. varians as well as webs of a range of other theridiids. In our survey we distinguish four major web types. Among webs with gumfooted lines, we distinguish between webs with a central retreat ( Achaearanea -type) and those with a peripheral retreat ( Latrodectus -type). Among webs without gumfooted lines, we distinguish between those which contain viscid silk ( Theridion -type) and those with a sheet-like structure, which do not ( Coleosoma -type). Theridiid gumfoot-webs consist of frame lines that anchor them to surroundings and support threads which possess viscid silk. Building of gumfooted lines constitutes a unique stereotyped behaviour and is most probably homologous for Nesticidae and Theridiidae. Webs remained in place for extended periods and were expanded and repaired, but no regular pattern of replacement was observed. We suggest that the cost of producing and maintaining viscid silk might have led to web reduction, at least in theridiids.  © 2003 The Linnean Society of London. Biological Journal of the Linnean Society , 2003, 78 , 293−305.  相似文献   

20.
Portia fimbriata (Doleschall) is an unusual salticid because it spins webs and uses its own webs and those of other species in predation. However, the courtship and threat displays of this species are more like those of typical, cursorial salticids than like typical web-building spiders. During male-female interactions, males perform leg-waving and leg-shaking displays, with legs I and II extended stiffly forward, while distant from the females. Before mounting they tap the females with their legs; and after mounting they tap, scrape and stroke the females' abdomens. Copulation takes place on or near the female's web or on the webs of other species. Hunched-legs displays, with legs I–III highly flexed and held to the side of the body, occur in male-male interactions. Also, during male-female and female-female interactions, females perform hunched-legs displays, strike, charge, ram, embrace, grapple with and leap at conspecifics. Sometimes they lose legs while grappling. After female-female interactions associated with maternal webs, if the resident decamps, the intruder eats the eggs left behind on a suspended leaf, spins a new egg-case over the destroyed one, and oviposits. Adult and sub-adult males co-habit in webs with sub-adult females for as long as 48 days and mate when the spiders mature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号