首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Larson JW  Wraight CA 《Biochemistry》2000,39(48):14822-14830
Redox titration of horse heart cytochrome c (cyt c), in the presence of varying concentrations of detergent-solubilized photosynthetic reaction center (RC) from Rhodobacter sphaeroides, revealed an RC concentration-dependent decrease in the measured cyt c midpoint potential that is indicative of a 3.6 +/- 0.2-fold stronger binding affinity of oxidized cytochrome to a single binding site. This effect was correlated with preferential binding in the functional complex by redox titration of the fraction of RCs exhibiting microsecond, first-order, special pair reduction by cytochrome. A binding affinity ratio of 3.1 +/- 0.4 was determined by this second technique, confirming the result. Redox titration of flash-induced intracomplex electron transfer also showed the association in the electron transfer-active complex to be strong, with a dissociation constant of 0.17 +/- 0.03 microM. The tight binding is associated with a slow off-rate which, in the case of the oxidized form, can influence the kinetics of P(+) reduction. The pitfalls of the common use of xenon flashlamps to photoexcite fast electron-transfer reactions are discussed with relation to the first electron transfer from primary to secondary RC quinone acceptors. The results shed some light on the diversity of kinetic behavior reported for the cytochrome to RC electron-transfer reaction.  相似文献   

2.
Paddock ML  Weber KH  Chang C  Okamura MY 《Biochemistry》2005,44(28):9619-9625
The cation-pi interaction between positively charged and aromatic groups is a common feature of many proteins and protein complexes. The structure of the complex between cytochrome c(2) (cyt c(2)) and the photosynthetic reaction center (RC) from Rhodobacter sphaeroides exhibits a cation-pi complex formed between Arg-C32 on cyt c(2) and Tyr-M295 on the RC [Axelrod, H. L., et al. (2002) J. Mol. Biol. 319, 501-515]. The importance of the cation-pi interaction for binding and electron transfer was studied by mutating Tyr-M295 and Arg-C32. The first- and second-order rates for electron transfer were not affected by mutating Tyr-M295 to Ala, indicating that the cation-pi complex does not greatly affect the association process or structure of the state active in electron transfer. The dissociation constant K(D) showed a greater increase when Try-M295 was replaced with nonaromatic Ala (3-fold) as opposed to aromatic Phe (1.2-fold), which is characteristic of a cation-pi interaction. Replacement of Arg-C32 with Ala increased K(D) (80-fold) largely due to removal of electrostatic interactions with negatively charged residues on the RC. Replacement with Lys increased K(D) (6-fold), indicating that Lys does not form a cation-pi complex. This specificity for Arg may be due to a solvation effect. Double mutant analysis indicates an interaction energy between Tyr-M295 and Arg-C32 of approximately -24 meV (-0.6 kcal/mol). This energy is surprisingly small considering the widespread occurrence of cation-pi complexes and may be due to the tradeoff between the favorable cation-pi binding energy and the unfavorable desolvation energy needed to bury Arg-C32 in the short-range contact region between the two proteins.  相似文献   

3.
Gerencsér L  Laczkó G  Maróti P 《Biochemistry》1999,38(51):16866-16875
To understand the details of rate limitation of turnover of the photosynthetic reaction center, photooxidation of horse heart cytochrome c by reaction center from Rhodobacter spheroides in detergent dispersion has been examined by intense continuous illumination under a wide variety of conditions of cytochrome concentration, ionic strength, viscosity, temperature, light intensity, and pH. The observed steady-state turnover rate of the cytochrome was not light intensity limited. In accordance with recent findings [Larson, J. W., Wells, T. A., and Wraight, C. A. (1998) Biophys. J. 74 (2), A76], the turnover rate increased with increasing bulk ionic strength in the range of 0-40 mM NaCl from 1000 up to 2300 s(-)(1) and then decreased at high ionic strength under conditions of excess cytochrome and ubiquinone and a photochemical rate constant of 4500 s(-)(1). Furthermore, we found the following: (i) The contribution of donor (cytochrome c) and acceptor (ubiquinone) sides as well as the binding of reduced and the release of oxidized cytochrome c could be separated in the observed kinetics. At neutral and acidic pH (when the proton transfer is not rate limiting) and at low or moderate ionic strength, the turnover rate of the reaction center was limited primarily by the low release rate of the photooxidized cytochrome c (product inhibition). At high ionic strength, however, the binding rate of the reduced cytochrome c decreased dramatically and became the bottleneck. The observed activation energy of the steady-state turnover rate reflected the changes in limiting mechanisms: 1.5 kcal/mol at 4 mM and 5.7 kcal/mol at 100 mM ionic strength. A similar distinction was observed in the viscosity dependence of the turnover rate: the decrease was steep (eta(-)(1)) at 40 and 100 mM ionic strengths and moderate (eta(-)(0.2)) under low-salt (4 mM) conditions. (ii) The rate of quinone exchange at the acceptor side with excess ubiquinone-30 or ubiquinone-50 was higher than the cytochrome exchange at the donor side and did not limit the observed rate of cytochrome turnover. (iii) Multivalent cations exerted effects not only through ionic strength (screening) but also by direct interaction with surface charge groups (ion-pair production). Heavy metal ion Cd(2+) bound to the RC with apparent dissociation constant of 14 microM. (iv) A two-state model of collisional interaction between reaction center and cytochrome c together with simple electrostatic considerations in the calculation of rate constants was generally sufficient to describe the kinetics of photooxidation of dimer and cytochrome c. (v) The pH dependence of cytochrome turnover rate indicated that the steady-state turnover rate of the cytochrome under high light conditions was not determined by the isoelectric point of the reaction center (pI = 6. 1) but by the carboxyl residues near the docking site.  相似文献   

4.
J Hall  X H Zha  L Yu  C A Yu  F Millett 《Biochemistry》1987,26(14):4501-4504
The interaction of the Rhodobacter sphaeroides cytochrome bc1 complex with Rb. sphaeroides cytochrome c2 and horse cytochrome c was studied by using specific lysine modification and ionic strength dependence methods. The rate of the reactions with both cytochrome c and cytochrome c2 decreased rapidly with increasing ionic strength above 0.2 M NaCl. The ionic strength dependence suggested that electrostatic interactions were equally important to the reactions of the two cytochromes, even though they have opposite net charges at pH 7.0. In order to define the interaction domain on horse cytochrome c, the reaction rates of derivatives modified at single lysine amino groups with trifluoroacetyl or trifluoromethylphenylcarbamoyl were measured. Modification of lysine-8, -13, -27, -72, -79, and -87 surrounding the heme crevice was found to significantly lower the rate of the reaction, while modification of lysines in other regions had no effect. This result indicates that lysines surrounding the heme crevice of horse cytochrome c are involved in electrostatic interactions with carboxylate groups at the binding site on the cytochrome bc1 complex. In order to define the reaction domain on cytochrome c2, a fraction consisting of a mixture of singly labeled 4-carboxy-2,6-dinitrophenylcytochrome c2 derivatives modified at lysine-35, -88, -95, -97, and -105 and several unidentified lysines was prepared. Although it was not possible to resolve these derivatives, all of the identified lysines are located on the front surface of cytochrome c2 near the heme crevice. The rate of reaction of this fraction was significantly smaller than that of native cytochrome c2, suggesting that the binding domain on cytochrome c2 is also located at the heme crevice.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
The electrostatic interactions governing binding and electron transfer from cytochrome c(2) (cyt c(2)) to the reaction center (RC) from the photosynthetic bacteria Rhodobacter sphaeroides were studied by using site-directed mutagenesis to change the charges of residues on the RC surface. Charge-reversing mutations (acid --> Lys) decreased the binding affinity for cyt c(2). Dissociation constants, K(D) (0.3--250 microM), were largest for mutations of Asp M184 and nearby acid residues, identifying the main region for electrostatic interaction with cyt c(2). The second-order rate constants, k(2) (1--17 x 10(8) M(-1) s(-1)), increased with increasing binding affinity (log k(2) vs log 1/K(D) had a slope of approximately 0.4), indicating a transition state structurally related to the final complex. In contrast, first-order electron transfer rates, k(e), for the bound cyt did not change significantly (<3-fold), indicating that electron tunneling pathways were unchanged by mutation. Charge-neutralizing mutations (acid --> amide) showed changes in binding free energies of approximately 1/2 the free energy changes due to the corresponding charge-reversing mutations, suggesting that the charges in the docked complex remain well solvated. Charge-enhancing mutations (amide --> acid) produced free energy changes of the same magnitude (but opposite sign) as changes due to the charge-neutralizing mutations in the same region, indicating a diffuse electrostatic potential due to cyt c(2). A two-domain model is proposed, consisting of an electrostatic docking domain with charged surfaces separated by a water layer and a hydrophobic tunneling domain with atomic contacts that provide an efficient pathway for electron transfer.  相似文献   

6.
The structure of the photosynthetic reaction center (RC) from Rhodobacter sphaeroides was determined at 3.1-A resolution by the molecular replacement method, using the Rhodopseudomonas viridis RC as the search structure. Atomic coordinates were refined with the difference Fourier method and restrained least-squares refinement techniques to a current R factor of 22%. The tertiary structure of the RC complex is stabilized by hydrophobic interactions between the L and M chains, by interactions of the pigments with each other and with the L and M chains, by residues from the L and M chains that coordinate to the Fe2+, by salt bridges that are formed between the L and M chains and the H chain, and possibly by electrostatic forces between the ends of helices. The conserved residues at the N-termini of the L and M chains were identified as recognition sites for the H chain.  相似文献   

7.
In the photosynthetic bacterium Rhodobacter sphaeroides, a water soluble cytochrome c2 (cyt c2) is the electron donor to the reaction center (RC), the membrane-bound pigment-protein complex that is the site of the primary light-induced electron transfer. To determine the interactions important for docking and electron transfer within the transiently bound complex of the two proteins, RC and cyt c2 were co-crystallized in two monoclinic crystal forms. Cyt c2 reduces the photo-oxidized RC donor (D+), a bacteriochlorophyll dimer, in the co-crystals in approximately 0.9 micros, which is the same time as measured in solution. This provides strong evidence that the structure of the complex in the region of electron transfer is the same in the crystal and in solution. X-ray diffraction data were collected from co-crystals to a maximum resolution of 2.40 A and refined to an R-factor of 22% (R(free)=26%). The structure shows the cyt c2 to be positioned at the center of the periplasmic surface of the RC, with the heme edge located above the bacteriochlorophyll dimer. The distance between the closest atoms of the two cofactors is 8.4 A. The side-chain of Tyr L162 makes van der Waals contacts with both cofactors along the shortest intermolecular electron transfer pathway. The binding interface can be divided into two domains: (i) A short-range interaction domain that includes Tyr L162, and groups exhibiting non-polar interactions, hydrogen bonding, and a cation-pi interaction. This domain contributes to the strength and specificity of cyt c2 binding. (ii) A long-range, electrostatic interaction domain that contains solvated complementary charges on the RC and cyt c2. This domain, in addition to contributing to the binding, may help steer the unbound proteins toward the right conformation.  相似文献   

8.
J E Long  B Durham  M Okamura  F Millett 《Biochemistry》1989,28(17):6970-6974
The role of specific lysine residues in facilitating electron transfer from Rhodobacter sphaeroides cytochrome c2 to the Rb. sphaeroides reaction center was studied by using six cytochrome c2 derivatives each labeled at a single lysine residue with a carboxydinitrophenyl group. The reaction of native cytochrome c2 at low ionic strength has a fast phase with a half-time of 0.6 microseconds that has been assigned to the reaction of bound cytochrome c2 [Overfield, R.E., Wraight, C.A., & DeVault, D. (1979) FEBS Lett. 105, 137]. Modification of lysine-55 did not affect the half-time of this phase but decreased the apparent binding constant by a factor of 2. The derivatives modified at lysines-10, -88, -95, -97, -99, -105, and -106 surrounding the heme crevice did not show any detectable fast phase but only slow second-order phases due to the reaction of solution cytochrome c2. These lysines thus appear to be involved in binding cytochrome c2 to the reaction center in an optimal orientation for electron transfer. The involvement of lysines-95 and -97 is especially significant, since they are located in an extra loop comprising residues 89-98 that is not present in eukaryotic cytochrome c. The reactions of horse cytochrome c derivatives modified at single lysine amino groups with trifluoroacetyl or [(trifluoromethyl)phenyl]carbamoyl were also studied. The derivatives modified at lysines-22, -55, -88, and -99 far removed from the heme crevice had nearly the same half-times for the fast phase as native cytochrome c, 6 microseconds.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
In Rhodobacter sphaeroides, cytochrome c2 (cyt c2) is a periplasmic redox protein required for photosynthetic electron transfer. cyt c2-deficient mutants created by replacing the gene encoding the apoprotein for cyt c2 (cycA) with a kanamycin resistance cartridge are photosynthetically incompetent. Spontaneous mutations that suppress this photosynthesis deficiency (spd mutants) arise at a frequency of 1 to 10 in 10(7). We analyzed the cytochrome content of several spd mutants spectroscopically and by heme peroxidase assays. These suppressors lacked detectable cyt c2, but they contained a new soluble cytochrome which was designated isocytochrome c2 (isocyt c2) that was not detectable in either cycA+ or cycA mutant cells. When spd mutants were grown photosynthetically, isocyt c2 was present at approximately 20 to 40% of the level of cyt c2 found in photosynthetically grown wild type cells, and it was found in the periplasm with cytochromes c' and c554. These spd mutants also had several other pleiotropic phenotypes. Although photosynthetic growth rates of the spd mutants were comparable to those of wild-type strains at all light intensities tested, they contained elevated levels of B800-850 pigment-protein complexes. Several spd mutants contained detectable amounts of isocyt c2 under aerobic conditions. Finally, heme peroxidase assays indicated that, under anaerobic conditions, the spd mutants may contain another new cytochrome in addition to isocyt c2. These pleiotropic phenotypes, the frequency at which the spd mutants arise, and the fact that a frameshift mutagen is very effective in generating the spd phenotype suggest that some spd mutants contain a mutation in loci which regulate cytochrome synthesis.  相似文献   

10.
The temperature-induced denaturation of the photosynthetic reaction center from Rhodobacter sphaeroides has been studied through the changes that occur in the absorption spectrum of the bound chromophores on heating. At elevated temperatures, the characteristic absorbance bands of the bacteriochlorins bound to the polypeptides within the reaction center are lost, and are replaced by features typical of unbound bacteriochlorophyll and bacteriopheophytin. The kinetics of the spectral changes cannot be explained by a direct conversion from the functional to the denatured form of the protein, and require the presence of at least one intermediate. Possible mechanisms for the transformation via an intermediate are examined using a global analysis of the kinetic data, and the most likely mechanism is shown to involve a reversible transformation between the native state and an off-pathway intermediate, coupled to an irreversible transformation to the denatured state. The activation energies for the transformations between the three components are calculated from the effect of temperature on the individual rate constants, and the likely structural changes of the protein during the temperature-induced transformation are discussed.  相似文献   

11.
12.
Gong XM  Paddock ML  Okamura MY 《Biochemistry》2003,42(49):14492-14500
The structure of the complex between cytochrome c(2) (cyt) and the photosynthetic reaction center (RC) from Rhodobacter sphaeroides shows contacts between hydrophobic residues Tyr L162, Leu M191, and Val M192 on the RC and the surface of the cyt [Axelrod et al. (2002) J. Mol. Biol. 319, 501-515]. The role of these hydrophobic residues in binding and electron transfer was investigated by replacing them with Ala and other residues. Mutations of the hydrophobic residues generally resulted in relatively small changes in the second-order electron-transfer rate k(2) (Br?nsted coefficient, alpha( )()= 0.15 +/- 0.05) indicating that the transition state for association occurs before short-range hydrophobic contacts are established. Larger changes in k(2), found in some cases, were attributed to a change in the second-order mechanism from a diffusion controlled regime to a rapidly reversible binding regime. The association constant, K(A), of the cyt and the rate of electron transfer from the bound cyt, k(e), were both decreased by mutation. Replacement of Tyr L162, Leu M191, or Val M192 by Ala decreased K(A) and k(e) by factors of 130, 10, 0.6, and 120, 9, 0.6, respectively. The largest changes were obtained by mutation of Tyr L162, showing that this residue plays a key role in both binding and electron transfer. The binding affinity, K(A), and electron-transfer rate, k(e) were strongly correlated, showing that changes of hydrophobic residues affect both binding and electron transfer. This correlation suggests that changes in distance across hydrophobic interprotein contacts have similar effects on both electron tunneling and binding interactions.  相似文献   

13.
Deletion of the cytochrome c2 gene in the purple bacterium Rhodobacter sphaeroides renders it incapable of phototrophic growth (strain cycA65). However, suppressor mutants which restore the ability to grow phototrophically are obtained at relatively high frequency (1-10 in 10(7)). We examined two such suppressors (strains cycA65R5 and cycA65R7) and found the expected complement of electron transfer proteins minus cytochrome c2: SHP, c', c551.5, and c554. Instead of cytochrome c2 which elutes from DEAE-cellulose between SHP and cytochrome c', at about 50 mM ionic strength in wild-type extracts, we found a new high redox potential cytochrome c in the mutants which elutes with cytochrome c551.5 at about 150 mM ionic strength. The new cytochrome is more acidic than cytochrome c2, but is about the same size or slightly smaller (13,500 Da). The redox potential of the new cytochrome from strain cycA65R7 (294 mV) is about 70 mV lower than that of cytochrome c2. The 280 nm absorbance of the new cytochrome is smaller than that of cytochrome c2, which suggests that there is less tryptophan (the latter has two residues). In vitro kinetics of reduction by lumiflavin and FMN semiquinones show that the reactivity of the new cytochrome is similar to that of cytochrome c2, and that there is a relatively large positive charge (+2.6) at the site of reduction, despite the overall negative charge of the protein. This behavior is characteristic of cytochromes c2 and unlike the majority of bacterial cytochromes examined. Fourteen out of twenty-four of the N-terminal amino acids of the new cytochrome are identical to the sequence of cytochrome c2. The N-termini of the cycA65R5 and cycA65R7 cytochromes were the same. The kinetics and sequence data indicate that the new protein may be a cytochrome c2 isozyme, which is not detectable in wild-type cells under photosynthetic growth conditions. We propose the name iso-2 cytochrome c2 for the new cytochrome produced in the suppressor strains.  相似文献   

14.
Tehrani A  Prince RC  Beatty JT 《Biochemistry》2003,42(30):8919-8928
Purple bacterial photosynthetic reaction center (RC) H proteins comprise three cellular domains: an 11 amino acid N-terminal sequence on the periplasmic side of the inner membrane; a single transmembrane alpha-helix; and a large C-terminal, globular cytoplasmic domain. We studied the roles of these domains in Rhodobacter sphaeroides RC function and assembly, using a mutagenesis approach that included domain swapping with Blastochloris viridis RC H segments and a periplasmic domain deletion. All mutations that affected photosynthesis reduced the amount of the RC complex. The RC H periplasmic domain is shown to be involved in the accumulation of the RC H protein in the cell membrane, while the transmembrane domain has an additional role in RC complex assembly, perhaps through interactions with RC M. The RC H cytoplasmic domain also functions in RC complex assembly. There is a correlation between the amounts of membrane-associated RC H and RC L, whereas RC M is found in the cell membrane independently of RC H and RC L. Furthermore, substantial amounts of RC M and RC L are found in the soluble fraction of cells only when RC H is present in the membrane. We suggest that RC M provides a nucleus for RC complex assembly, and that a RC H/M/L assemblage results in a cytoplasmic pool of soluble RC M and RC L proteins to provide precursors for maximal production of the RC complex.  相似文献   

15.
The bacterial reaction center (RC) has become a reference model in the study of the diverse interactions of quinones with electron transfer complexes. In these studies, the RC functionality was probed through flash-induced absorption changes where the state of the primary donor is probed by means of a continuous measuring beam and the electron transfer is triggered by a short intense light pulse. The single-beam set-up implies the use as reference of the transmittance measured before the light pulse. Implicit in the analysis of these data is the assumption that the measuring beam does not elicit the protein photochemistry. At variance, measuring beam is actinic in nature at almost all the suitable wavelengths. In this contribution, the analytical modelling of the time evolution of neutral and charge-separated RCs has been performed. The ability of measuring light to elicit RC photochemistry induces a first order growth of the charge-separated state up to a steady state that depends on the light intensity and on the occupation of the secondary quinone (Q(B)) site. Then the laser pulse pumps all the RCs in the charge-separated state. The following charge recombination is still affected by the measuring beam. Actually, the kinetics of charge recombination measured in RC preparation with the Q(B) site partially occupied are two-exponential. The rate constant of both fast and slow phases depends linearly on the intensity of the measuring beam while their relative weights depend not only on the fractions of RC with the Q(B) site occupied but also on the measuring light intensity itself.  相似文献   

16.
Plasmids encoding the structural genes for the Rhodobacter capsulatus and Rhodobacter sphaeroides cytochrome (cyt) bc1 complexes were introduced into strains of R. capsulatus lacking the cyt bc1 complex, with and without cyt c2. The R. capsulatus merodiploids contained higher than wild-type levels of cyt bc1 complex, as evidenced by immunological and spectroscopic analyses. On the other hand, the R. sphaeroides-R. capsulatus hybrid merodiploids produced only barely detectable amounts of R. sphaeroides cyt bc1 complex in R. capsulatus. Nonetheless, when they contained cyt c2, they were capable of photosynthetic growth, as judged by the sensitivity of this growth to specific inhibitors of the photochemical reaction center and the cyt bc1 complex, such as atrazine, myxothiazol, and stigmatellin. Interestingly, in the absence of cyt c2, although the R. sphaeroides cyt bc1 complex was able to support the photosynthetic growth of a cyt bc1-less mutant of R. capsulatus in rich medium, it was unable to do so when C4 dicarboxylic acids, such as malate and succinate, were used as the sole carbon source. Even this conditional ability of R. sphaeroides cyt bc1 complex to replace that of R. capsulatus for photosynthetic growth suggests that in the latter species the cyt c2-independent rereduction of the reaction center is not due to a structural property unique to the R. capsulatus cyt bc1 complex. Similarly, the inability of R. sphaeroides to exhibit a similar pathway is not due to some inherent property of its cyt bc1 complex.  相似文献   

17.
18.
In order to define the interaction domain on Rhodobacter sphaeroides cytochrome c2 for the photosynthetic reaction center, positively charged lysine amino groups on cytochrome c2 were modified to form negatively charged (carboxydinitrophenyl)- (CDNP-) lysines. The reaction mixture was separated into several different fractions by ion-exchange chromatography on (carboxymethyl)cellulose. Tryptic digests of these fractions were analyzed by reverse-phase peptide mapping to determine the lysines that had been modified. Fraction A was found to consist of a mixture of singly labeled derivatives modified at lysine-35, -88, -95, -97, and -105 and several other unidentified lysines comprising 32% of the total. Although it was not possible to resolve these derivatives, all of the identified lysines are located on the front surface of cytochrome c2 near the heme crevice. The second-order rate constant for the reaction of native cytochrome c2 with reaction centers was 2.0 X 10(8) M-1 s-1, while that for fraction A was 20-fold less, 1.0 X 10(7) M-1 s-1. This suggests that lysines surrounding the heme crevice of cytochrome c2 are involved in electrostatic interactions with carboxylate groups at the binding site of the reaction center. The reaction rates of horse heart cytochrome c derivatives modified at single lysine amino groups with trifluoroacetyl or trifluoromethylphenylcarbamoyl were also measured. Modification of lysine-8, -13, -27, -72, -79, and -87 surrounding the heme crevice significantly lowered the rate of reaction, while modification of lysines in other regions had no effect. This indicates that the reaction of horse heart cytochrome c with the reaction center also involves the heme crevice domain.  相似文献   

19.
The photosynthetic bacterium Rhodobacter sphaeroides produces a heme protein (SHP), which is an unusual c-type cytochrome capable of transiently binding oxygen during autooxidation. Similar proteins have not only been observed in other photosynthetic bacteria but also in the obligate methylotroph Methylophilus methylotrophus and the metal reducing bacterium Shewanella putrefaciens. A three-dimensional structure of SHP was derived using the multiple isomorphous replacement phasing method. Besides a model for the oxidized state (to 1.82 A resolution), models for the reduced state (2.1 A resolution), the oxidized molecule liganded with cyanide (1. 90 A resolution), and the reduced molecule liganded with nitric oxide (2.20 A resolution) could be derived. The SHP structure represents a new variation of the class I cytochrome c fold. The oxidized state reveals a novel sixth heme ligand, Asn(88), which moves away from the iron upon reduction or when small molecules bind. The distal side of the heme has a striking resemblance to other heme proteins that bind gaseous compounds. In SHP the liberated amide group of Asn(88) stabilizes solvent-shielded ligands through a hydrogen bond.  相似文献   

20.
The cytochrome bc(1) complex (bc(1)) is a major contributor to the proton motive force across the membrane by coupling electron transfer to proton translocation. The crystal structures of wild type and mutant bc(1) complexes from the photosynthetic purple bacterium Rhodobacter sphaeroides (Rsbc(1)), stabilized with the quinol oxidation (Q(P)) site inhibitor stigmatellin alone or in combination with the quinone reduction (Q(N)) site inhibitor antimycin, were determined. The high quality electron density permitted assignments of a new metal-binding site to the cytochrome c(1) subunit and a number of lipid and detergent molecules. Structural differences between Rsbc(1) and its mitochondrial counterparts are mostly extra membranous and provide a basis for understanding the function of the predominantly longer sequences in the bacterial subunits. Functional implications for the bc(1) complex are derived from analyses of 10 independent molecules in various crystal forms and from comparisons with mitochondrial complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号