首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cells from a human endometrial adenocarcinoma cell line (HEC-50) were superfused with mixtures of [3H]E2 and [14C]E1 in order to estimate rates of entry and exit of E1 and E2 into and out of cells according to previously published procedures (J. steroid Biochem., 13 (1980) 1379). Proportionality between rates of entry and concentrations of E2 outside the cells, indicative of passive diffusion, was found at levels of E2 ranging from 1 to 100 ng/ml. Effects of albumin and of pure human sex steroid binding protein (SBP) on the rate of entry of E2 were also evaluated in parallel superfusions. In other single tracer experiments, [3H]E2 was used at concentrations as low as 100 pg/ml and the effects of plasma proteins on entry were evaluated by measuring steady-state concentrations of E2 and E1 in cells and superfusate. Results from these experiments indicate that albumin, and to a larger extent SBP, reduced the entry of E2 into HEC-50 cells. Similar results were obtained when CG-5 cells, a variant of the human breast cancer cell line MCF-7, were superfused with [3H]E2. Further experiments are needed, however, to determine the physiologic role of plasma estrogen binding proteins on the entry and metabolism of E1 and E2 into target cells.  相似文献   

2.
3.
4.
5.
It is well-known that exposure to unopposed estrogen is considered as an important risk factor for endometrial cancer. Recent studies have shown that over-expression of DNA methyltransferases (DNMTs) are involved in the development of endometrial cancer. Therefore, the present study was undertaken to elucidate the impact of estrogen on the expression of DNMTs in endometrial cancer. Ishikawa cell line was used. Flow cytometry analysis demonstrated that 17 β-estradiol (E2) enhanced the cell proliferation with a peak at 10−8 M. Over-expression of DNMT3B treated with E2 was confirmed by real-time PCR and western blotting analysis. Furthermore, the up-regulation of DNMT3B expression induced by E2 was suppressed by the addition of ICI182780. However, we did not observe changes in the expression of DNMT1. Our study suggests that estrogen up-regulating the expression of DNMT3B in an ER-dependent pathway may be a possible mechanism for estrogen facilitates the malignant transformation of endometrial cancer cells.  相似文献   

6.
Sulfation is an important conjugation reaction in the metabolism of steroids. Steroids sulfates do not interact with the appropriate hormone receptors; additionally, the presence of the charged sulfate moiety increases the aqueous solubility and excretion of most steroids. Estrogen sulfotransferase (EST) is the major form of human cytosolic ST involved in the conjugation of estrogens. EST is important in the inactivation of beta-estradiol (E2) during the luteal phase of the menstrual cycle. EST has a significantly higher affinity for the sulfation of E2 and 17alpha-ethinylestradiol (EE2) than for other potent estrogens such as diethylstilbestrol (DES) and equine estrogens. The ability of EST to sulfate these estrogenic compounds at physiologic concentrations is important in regulating their activation of the ER in estrogen responsive cells. Human Ishikawa endometrial adenocarcinoma (ISH) cells possess an estrogen receptor (ER)-regulated alkaline phosphatase (AlkPhos) which is used to assay ER activation. To study the effects of EST activity on the ER activation of different estrogenic compounds, ISH cells were stably transformed with an EST expression vector. Dose-response curves for the induction of AlkPhos activity by the different estrogenic compounds were generated with EST/ISH and control pcDNA/ISH cells. EST/ISH cells were 200-fold less sensitive to E2 and EE2 than were control cells. No differences were observed in the dose response curves for DES between EST/ISH and pcDNA/ISH cells. EST/ISH cells were approximately 3-10-fold less sensitive to the equine estrogens equilin and 17-equilin as compared to control cells. The ability of EST to decrease the ER activation of an estrogen correlates with the sulfation of these compounds at nanomolar concentrations by EST/ISH and pcDNA/ISH ISH cells. These results indicate that EST is capable of efficiently inactivating E2 and EE2 but is significantly less effective in inhibiting the ER binding of other potent estrogenic compounds.  相似文献   

7.
There is a growing body of evidence indicating that bioactive sphingolipids play a key role in cancer development, progression and metastasis. However, sphingolipid metabolism in malignant tumors is poorly investigated. Therefore, the aim of the present study was to examine the content of selected intermediates of ceramide metabolism and the activity of key enzymes of ceramide de novo synthesis and sphingosine-1-phosphate (S1P) production in the endometrial cancer. The specimens of cancer tissue and healthy endometrium were obtained from women undergoing surgery because of the cancer (n = 23) and because of myomas (n = 18), respectively. The content of sphinganine, dihydroceramide, ceramide, sphingosine and S1P was measured using high pressure liquid chromatography. The activity of the enzymes was determined using radioactive substrates. It has been found that the content of each examined sphingolipid was markedly elevated in the cancer tissue compared with the healthy endometrium. Namely, sphinganine, sphingosine and dihydroceramide by 3–4.6-fold, ceramide and S1P by 1.9- and 1.6-fold, respectively. Interestingly, the ratio of S1P to ceramide remained stable. The activity of serine palmitoyltransferase and sphingosine kinase 1 was increased by 2.3- and 2.6-fold, respectively. We conclude that endometrial carcinoma is characterized by profound changes in sphingolipid metabolism that likely contribute to its progression and chemoresistance.  相似文献   

8.
The regulation of both estrogen and progesterone receptor levels in human endometrial adenocarcinoma cells of the Ishikawa line was investigated immunocytochemically by using monoclonal antibodies. Positive staining for estrogen and progesterone receptors was observed in the nuclei of Ishikawa cells. Intercellular heterogeneity in receptor content was evident from the presence of receptor-positive or -negative cells and from differences in staining intensity of positive cells. Quantitative analysis was performed by scoring the staining intensity and the proportion of positively stained cells. The time and dose-dependent stimulatory effect of estradiol added to culture media on progesterone receptor levels was studied by applying both immunocytochemical and biochemical methods. Estradiol at 10 nM (optimal concentration) increased the intensity score for PR from an initial value of 10.1 to 78.3 after 72 h incubation, and the proportion of the positive staining cells from 6.7 to 42.7%. Promegestone (R5020) was effective at 1 microM concentration in decreasing the intensity score for ER from 31.1 to 14.6 after 72 h exposure and the proportion of positive cells from 19.0 to 11.4%.  相似文献   

9.
Endometrial cancer is the most common gynecologic malignancy and is associated with increased morbidity each year, including young people. However, its mechanisms of proliferation and progression are not fully elucidated. It is well known that abnormal glycosylation is involved in oncogenesis, and fucosylation is one of the most important types of glycosylation. In particular, fucosyltransferase 8 (FUT8) is the only FUT responsible for α1, 6-linked fucosylation (core fucosylation), and it is involved in various physiological as well as pathophysiological processes, including cancer biology. Therefore, we aimed to identify the expression of FUT8 in endometrial endometrioid carcinoma and investigate the effect of the partial silencing of the FUT8 gene on the cell proliferation of Ishikawa cells, an epithelial-like endometrial cancer cell line. Quantitative real-time PCR analysis showed that FUT8 gene expression was significantly elevated in the endometrial endometrioid carcinoma, compared to the normal endometrium. The immunostaining of FUT8 and Ulex europaeus Agglutinin 1 (UEA-1), a kind of lectin family specifically binding to fucose, was detected endometrial endometrioid carcinoma. The proliferation assay showed FUT8 partial knockdown by transfection of siRNA significantly suppressed the proliferation of Ishikawa cells, concomitant with the upregulation in the gene expressions associated with the interesting pathways associated with de-ubiquitination, aspirin trigger, mesenchymal-epithelial transition (MET) et al. It was suggested that the core fucosylation brought about by FUT8 might be involved in the proliferation of endometrial endometrioid carcinoma cells.  相似文献   

10.
11.
Estradiol (E(2)) is an important risk factor in the development and progression of breast cancer. However, a "direct effect" of E(2) in breast cancerization has not yet been demonstrated. The estrogen receptor complex can mediate the activation of oncogens, proto-oncogens, nuclear proteins and other target genes that can be involved in the transformation of normal to cancerous cells. Breast cancer cells possess all the enzymes (sulfatase, aromatase, 17beta-hydroxysteroid dehydrogenase (17beta-HSD)) necessary for the local bioformation of E(2). In the last years, many studies have shown that treatment of breast cancer patients using anti-aromatase agents has beneficial therapeutic effects. The aromatase activity is very low in most breast cancer cells but was significantly increased in a hormone-dependent breast cancer cell line: the MCF-7aro, using the aromatase cDNA transfection and G-418 (neomycin) selection. In the present study, we explore the effect of E(2) on the aromatase activity of this cell line. The MCF-7aro cell line was a gift from Dr. S. Chen (Beckman Research Institute, Duarte, U.S.A.). For experiments the cells were stripped of endogenous steroids and incubated with physiological concentrations of [(3)H]-testosterone (5 x 10(-9)mol/l) alone or in the presence of E(2) (5 x 10(-5), 5 x 10(-7) and 5 x 10(-9)mol/l) for 24h at 37 degrees C. The cellular radioactivity uptake was determined in the ethanolic supernatant and the DNA content in the remaining pellet. [(3)H]-E(2), [(3)H]-estrone ([(3)H]-E(1)) and [(3)H]-testosterone were characterized by thin layer chromatography and quantified using the corresponding standard. It was observed that [(3)H]-testosterone is converted mainly into [(3)H]-E(2) and not to E(1), which suggests very low or absence of oxidative 17beta-HSD (type 2) activity in these experimental conditions. The aromatase activity, corresponding to the conversion of [(3)H]-testosterone to [(3)H]-E(2) after 24h, is relatively high, since the concentration of E(2) was 2.74+/-0.11pmol/mg DNA in the non-treated cells. E(2) inhibits this conversion by 77, 57 and 21%, respectively, at the concentrations of 5 x 10(-5), 5 x 10(-7) and 5 x 10(-9)mol. In previous studies, it was demonstrated that E(2) exerts a potent anti-sulfatase activity in the MCF-7 and T-47D breast cancer cells. The present data show that E(2) can also block the aromatase activity. The dual inhibition of the aromatase and sulfatase activities, two crucial enzymes for the biosynthesis of E(2) by E(2) itself in breast cancer add interesting and attractive information for the use of estrogen therapeutic treatments.  相似文献   

12.
13.
Steroid hormone regulation of proliferation of the Ishikawa human endometrial adenocarcinoma cell line was investigated in defined tissue culture medium. Oestradiol increased cell number following treatment for greater than 8 days; 4-OH tamoxifen, used alone, induced growth in a similar manner to oestradiol and was not antagonistic when used in combination with oestradiol. Progesterone decreased cell number 4 days after treatment but thereafter the effect was lost; the effect of progesterone was abolished in the presence of Phenol Red, consistent with the oestrogenic properties of this indicator. Oestradiol together with progesterone for greater than 8 days resulted in maximal growth and was preceded by an apparent increase in synthesis of a protein of molecular weight 36 kDa pI 8.  相似文献   

14.
15.
16.
17.
Normal cells mainly rely on oxidative phosphorylation as an effective energy source in the presence of oxygen. In contrast, most cancer cells use less efficient glycolysis to produce ATP and essential biomolecules. Cancer cells gain the characteristics of metabolic adaptation by reprogramming their metabolic mechanisms to meet the needs of rapid tumor growth. A subset of cancer cells with stem characteristics and the ability to regenerate exist throughout the tumor and are therefore called cancer stem cells (CSCs). New evidence indicates that CSCs have different metabolic phenotypes compared with differentiated cancer cells. CSCs can dynamically transform their metabolic state to favor glycolysis or oxidative metabolism. The mechanism of the metabolic plasticity of CSCs has not been fully elucidated, and existing evidence indicates that the metabolic phenotype of cancer cells is closely related to the tumor microenvironment. Targeting CSC metabolism may provide new and effective methods for the treatment of tumors. In this review, we summarize the metabolic characteristics of cancer cells and CSCs and the mechanisms of the metabolic interplay between the tumor microenvironment and CSCs, and discuss the clinical implications of targeting CSC metabolism.  相似文献   

18.
c-Jun N-terminal kinases (JNKs) are important regulators of cell proliferation and apoptosis that have been implicated in tumorigenesis. We investigated the role of JNKs in apoptotic responses in Ishikawa and HEC-50 cells, models of type I and type II endometrial cancer, respectively. Etoposide treatment or UV irradiation resulted in sustained activation of JNK, correlating with the induction of apoptosis. Inhibition of JNK, or MAP kinase kinase 4 (MKK4), selectively suppressed apoptotic responses in both Ishikawa and HEC-50 cells. Knockdown of protein kinase C δ (PKCδ) also attenuated apoptosis in endometrial cancer cells and inhibited the sustained, UV-mediated JNK activation in HEC-50, but not Ishikawa cells. Etoposide-induced JNK phosphorylation was unaffected by PKCδ knockdown, implying that JNK can regulate apoptosis by PKCδ-dependent and independent pathways, according to stimulus and cell type. Thus, expression and activity of JNK and PKCδ in endometrial cancer cells modulate apoptosis and sensitivity to chemotherapeutic agents and may function as tumor suppressors in the endometrium. Elaine M. Reno and James M. Haughian are first authors.  相似文献   

19.
Metabolism of progesterone by human endometrium has been described, but the rapidity and extent of progesterone metabolism is incompletely documented in cellular fractions of normal endometrium. Therefore, we evaluated progesterone metabolism in separated stromal and gland cells in culture obtained from normal human endometrium by thin-layer chromatography. We find that in both cell types, the most abundant metabolite is 3beta-hydroxy-5alpha-pregnan-20-one (70%), followed by 5alpha-pregnane-3,20-dione (15%), and 3alpha-hydroxy-5alpha-pregnan-20-one (10%). A small amount is metabolized to 5alpha-pregnane-3alpha/3beta,20alpha-diols and to 3beta,6alpha-dihydroxy-5alpha-pregnan-20-one. The metabolism of progesterone in cultured endometrial cells occurs rapidly; 70% of progesterone is metabolised in 8 h, and 90% by 24 h. We conclude that when in vitro experiments are conducted utilizing progesterone treatment, the rapidity and the extent of the metabolism of this steroid should be taken into account.  相似文献   

20.
CDK8 is either amplified or mutated in a variety of human cancers, and CDK8 functions as an oncoprotein in melanoma and colorectal cancers. Previously, we reported that loss or reduction of CDK8 results in aberrant fat accumulation in Drosophila and mammals, suggesting that CDK8 plays an important role in inhibiting lipogenesis. Epidemiological studies have identified obesity and overweight as the major risk factors of endometrial cancer, thus we examined whether CDK8 regulates endometrial cancer cell growth by using several endometrial cancer cell lines, including KLE, which express low levels of CDK8, as well as AN3 CA and HEC-1A cells, which have high levels of endogenous CDK8. We observed that ectopic expression of CDK8 in KLE cells inhibited cell proliferation and potently blocked tumor growth in an in vivo mouse model. In addition, gain of CDK8 in KLE cells blocked cell migration and invasion in transwell, wound healing and persistence of migratory directionality assays. Conversely, we observed the opposite effects in all of the aforementioned assays when CDK8 was depleted in AN3 CA cells. Similar to AN3 CA cells, depletion of CDK8 in HEC-1A cells strongly enhanced cell migration in transwell assays, while overexpression of CDK8 in HEC-1A cells blocked cell migration. Furthermore, gene profiling of KLE cells overexpressing CDK8 revealed genes whose protein products are involved in lipid metabolism, cell cycle and cell movement pathways. Finally, depletion of CDK8 increased the expression of lipogenic genes in endometrial cancer cells. Taken together, these results show a reverse correlation between CDK8 levels and several key features of the endometrial cancer cells, including cell proliferation, migration and invasion as well as tumor formation in vivo. Therefore, in contrast to the oncogenic effects of CDK8 in melanoma and colorectal cancers, our results suggest that CDK8 plays a tumor-suppressive role in endometrial cancers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号