共查询到20条相似文献,搜索用时 15 毫秒
1.
The relationship between lipid peroxidation and phospholipase A2 (PLA2) hydrolytic activity was studied using unilamellar vesicles (liposomes) as model membranes. Hydrolytic specificity was examined using vesicles prepared with pure bovine heart phosphatidylcholine (PC), bovine heart phosphatidylethanolamine (PE), or mixtures of these phospholipids, using two preparative procedures, i.e., sonication or extrusion. Lipid peroxidation was induced by incubating vesicles with cumene hydroperoxide and hematin at 37 degrees C. Determinations of the extent of peroxidation by means of diene conjugate content derived from second derivative spectra or by polarographic measurement of oxygen consumption rates provided a basis for comparing the extent of peroxidation of each phospholipid species to their subsequent hydrolysis by PLA2 (from Crotalus adamanteus). The extent of hydrolysis was determined through the release of arachidonic acid from either PC or PE. The PE distribution among the outer vs. inner leaflet of the membrane bilayer was nearly equal in sonicated vesicles, whereas most of the phospholipid was incorporated into the inner leaflet in extruded vesicles. The proportion of PE found in the inner leaflet progressively increased as the ratio of PE to PC increased in both sonicated and extruded vesicle preparations. Lipid peroxidation had no effect on PE distribution under the conditions examined. There was a clear preference for PC peroxidation for all vesicle compositions tested and PC was preferentially hydrolyzed by PLA2. This effect is proposed to result from a perturbation of membrane structure following peroxidation with assimilation of PC into PLA2-susceptible domains whereas PE peroxidation and hydrolysis is less affected in mixed PC/PE vesicles. Lipid peroxidation imposes an additional hydrolytic susceptibility over the effects exerted through the mixing of these phospholipids which is based on structural changes rather than formation of specific substrates for PLA2. 相似文献
2.
Thiophosphate containing analogs of phosphatidylcholine have been synthesized with varying degrees of structural complexity. These analogs have been used in a continuous spectrophotometric assay for phospholipase C from Clostridium perfringens in order to examine the requirement for substrate ester functionalities and the stereoselectivity of the enzyme. The substrate analogs with ester groups in the nonpolar portion of the molecule were acceptable substrates for phospholipase C, while those analogs without ester functionalities were not hydrolyzed. Substrate analogs with chiral centers were resolved using the stereospecificity of phospholipase A2 from Crotalus atrox venom. These resolved substrates were used to study the biphasic hydrolytic time courses observed when rac-dioctanoylphosphatidylthiocholine was used as substrate. The "naturally occurring" enantiomer with R absolute configuration was rapidly hydrolyzed in the presence of phospholipase C while the "nonnaturally occurring" enantiomer with S configuration was slowly hydrolyzed only after a long induction or "lag" period. The selectivity for the R enantiomer over the S enantiomer can be lessened by altering the composition of the substrate micelles resulting in accelerated rates of hydrolysis of the S enantiomer. 相似文献
3.
During the course of a study involving the assay of a membrane-bound phospholipase A2 it was observed that a commercial preparation of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine used as substrate had intrinsic lipolytic activity at pH 8.5. Further investigation revealed a Ca2+-dependent phospholipase A largely susceptible to treatment by the alkylating reagent p-bromophenacyl bromide or by heat (15 min at 120 degrees C). Complete separation of enzyme and phospholipid could be achieved by thin-layer chromatography. Such a contamination was not observed in a chemically identical phosphatidylcholine obtained from a different supplier. These observations may be relevant to investigators using commercial preparations of phospholipids in a variety of studies, including intracellular phospholipase A2 determination. 相似文献
4.
Hydrolysis of phosphatidylcholine in phosphatidylcholine-cholate mixtures by porcine pancreatic phospholipase A2 总被引:5,自引:0,他引:5
N Gheriani-Gruszka S Almog R L Biltonen D Lichtenberg 《The Journal of biological chemistry》1988,263(24):11808-11813
Pancreatic phospholipase A2 (PLA2)-catalyzed hydrolysis of egg yolk phosphatidylcholine (PC) in mixed PC-cholate systems depends upon composition, structure, and size of the mixed aggregates. The hydrolysis of PC-cholate-mixed micelles made of an equal number of PC and cholate molecules is consistent with a Km of about 1 mM and a turnover number of about 120 s-1. Increasing the cholate/PC ratio in the micelles results in a decreased initial velocity. Hydrolysis of cholate-containing unilamellar vesicles is very sensitive to the ratio of cholate to PC in the vesicles. The hydrolysis of vesicles with an effective cholate/PC ratio greater than 0.27 is similar to that of the mixed micelles. The time course of hydrolysis of vesicles with lower effective ratios is similar to that exhibited by pure dipalmitoyl-phosphatidylcholine (DPPC) large unilamellar vesicles in the thermotropic phase transition region. In the latter two cases, the rate of hydrolysis increases with time until substrate depletion becomes significant. The reaction can be divided phenomenologically into two phases: a latency phase where the amount of product formed is a square function of time (P(t) = At2) and a phase distinguished by a sudden increase in activity. The parameter A, which describes the activation rate of the enzyme during the initial phase in a quantitative fashion, increases with increasing [PLA2], decreasing [PC], decreasing vesicle size, and increasing relative cholate content of the vesicles. The effect of [PLA2] and [PC] on the hydrolysis reaction is similar to that found with pure DPPC unilamellar vesicles in their thermotropic phase transition region. The effect of cholate on the hydrolysis reaction is similar to that of temperature variation within the phase transition of temperature variation within the phase transition of DPPC. These results are consistent with our previously proposed model, which postulates that activation of PLA2 involves dimerization of the enzyme on the substrate surface and that the rate of activation is directly proportional to the magnitude of lipid structural fluctuations. It is suggested that large structural fluctuations, which exist in the pure lipid system in the phase transition range, are introduced into liquid crystalline vesicles by the presence of cholate and thus promote activation of the enzyme. 相似文献
5.
Short-chain phosphatidylethanolamines: physical properties and susceptibility of the monomers to phospholipase A2 action 总被引:2,自引:0,他引:2
The homologous series of optically active short-chain phosphatidylethanolamines (PE) from dibutyryl-PE to dioctanoyl-PE was synthesized. In addition, two monomeric short-chain phospholipid analogues that are not degraded by phospholipase A2 (1,2-bis[(butylcarbamyl)oxy]-sn-glycero-3-phosphocholine and the corresponding ethanolamine derivative) were synthesized. In contrast to the short-chain phosphatidylcholines (PC), short-chain PE's have defined solubilities in water. No break below the solubility limit was found in surface tension plots, suggesting that these compounds exist as monomers in aqueous solution. Only when a significant fraction of the molecules is negatively charged can they form micelles by themselves. Cobra venom phospholipase A2 hydrolyzes monomeric short-chain PE's at about the same rate as short-chain PC's but hydrolyzes long-chain PC's much more rapidly than long-chain PE's. The hydrolysis of short-chain PE's is found to be activated by phosphocholine-containing compounds only in the presence of an interface; in its absence phosphocholine-containing compounds can act as competitive inhibitors. Possible explanations for this phenomenon are considered. 相似文献
6.
T Y Ahmad J D Morrisett H J Pownall A M Gotto H L Brockman H Z Sable E O Lewis A J Hancock 《Chemistry and physics of lipids》1990,55(3):231-243
Seven geometrical or positional isomers of dipalmitoyl cyclopentanophosphoric acid (DPCPA) have been synthesized and studied: 1,3/2-1P (I); 1,2/3-1P (II); 1,2/3-3P (III), 1,2,3/0-1P (IV); 1,2,3/0-2P (V); 1,3/2-2P (VI); 1,2/3-2P (VII). When dispersed in 0.1 M Tris-HCl at pH 7.4, I-VII gave thermal transitions (Tc) of 60.0 degrees, 59.0 degrees, 56.8 degrees, 55.3 degrees, 38.3 degrees, 36.8 degrees and 34.0 degrees C, respectively, as measured by differential scanning calorimetry (DSC). When the lipids were dispersed at pH 9.5 in 0.1 M borate, Tc of I-IV decreased, whereas Tc of V-VII increased. In contrast, at pH 1.5 in 0.1 M HCl/KCl, Tc of I-IV decreased slightly, but Tc of V-VII rose markedly. To determine the effect of head group geometry and substitution pattern on acyl chain motion, EPR spectra of 1-palmitoyl, 2-[16-doxylstearoyl]-glycero-3-phosphoric acid in bilayers of DPCPA isomers were acquired. Abrupt spectral changes occurred at temperatures closely correlating with transition temperatures observed by DSC. These results have led to the conclusions that: (i) isomers I-IV containing vicinal acyl chains form bilayers that exhibit structural transitions at temperatures higher than those at which transitions are exhibited by isomers V-VII which have a polar phosphate group interposed between the two chains; (ii) the effects of differences in backbone structure are transmitted down the entire length of the acyl chains; (iii) the orientation of the cyclopentane ring in the isomers I-IV is significantly different from that in isomers V-VII at pH values where the phosphate group is doubly negatively charged. 相似文献
7.
8.
Price JA 《Journal of biochemical and biophysical methods》2007,70(3):441-444
Phospholipase A(2) is an important enzyme in various pathologies. Although fluorescent substrate assays for it have been recently developed, there is a need for an assay with inexpensive commercially available substrates, useful when samples interfered with fluorescent assays, that is nonisotopic, continuous, conducted at physiological pH, and in a 96 well format. A reaction using bromothymol blue was developed that meets all these requirements. 相似文献
9.
P.C. Noordam A. Killian R.F.M. Oude Elferink J. de Gier 《Chemistry and physics of lipids》1982,31(2):191-204
Comparative studies on bilayer systems of saturated phosphatidylcholines and phosphatidylethanolamines revealed a maximum in ionic permeability in phosphatidylcholine bilayers at the temperature of the gel to liquid-crystalline phase transition but such an increase in permeability was not detectable in bilayers of phosphatidylethanolamine. Furthermore, it was found that at the phase transition temperature the phosphatidylcholine bilayers are subject to rapid hydrolysis by pancreatic phospholipase A2 whereas phosphatidylethanolamine bilayers are not. These differences are discussed in view of detailed information on the molecular organization in the gel and liquid crystalline phases of the two phospholipid classes. 相似文献
10.
Phospholipase D (PLD) hydrolyzes membrane phospholipids and is crucial in various physiological processes and transduction of different signals. Secretory phospholipases play important roles in mammals, however, whose functions in plants remain largely unknown. We previously identified a rice secretory PLD (spPLD) that harbors a signal peptide and here we reported the secretion and function of spPLD in rice heading time regulation. Subcellular localization analysis confirmed the signal peptide is indispensable for spPLD secretion into the extracellular spaces, where spPLD hydrolyzes substrates. spPLD overexpression results in delayed heading time which is dependent on its secretory character, while suppression or deficiency of spPLD led to the early heading of rice under both short-day and long-day conditions, which is consistent with that spPLD overexpression/suppression indeed led to the reduced/increased Hd3a/RFT1 (Arabidopsis Flowing Locus T homolog) activities. Interestingly, rice Hd3a and RFT1 bind to phosphatidylcholines (PCs) and a further analysis by lipidomic approach using mass spectrometry revealed the altered phospholipids profiles in shoot apical meristem, particularly the PC species, under altered spPLD expressions. These results indicate the significance of secretory spPLD and help to elucidate the regulatory network of rice heading time. 相似文献
11.
Artificial membranes may be resistant or susceptible to catalytic attack by secretory phospholipase A(2) (sPLA(2)) depending on the physical properties of the membrane. Living cells are normally resistant but become susceptible during trauma, apoptosis, and/or a significant elevation of intracellular calcium. Intact erythrocytes and ghosts were studied to determine whether the principles learned from artificial systems apply to biological membranes. Membrane properties such as phospholipid and/or protein composition, morphology, and microscopic characteristics (e.g. fluidity) were manipulated by preparing ghosts under different experimental conditions such as in the presence or absence of divalent cations with or without ATP. The properties of each membrane preparation were assessed by biochemical and physical means (fluorescence spectroscopy and electron and two-photon microscopy using the membrane probes bis-pyrene and laurdan) and compared with sPLA(2) activity. The properties that appeared most relevant were the degree of phosphatidylserine exposure on the outer face of the membrane and changes to the membrane physical state detected by bis-pyrene and laurdan. Specifically, vulnerability to hydrolysis by sPLA(2) was associated with an increase in bilayer order apparently reflective of expansion of membrane regions of diminished fluidity. These results argue that the general principles identified from studies with artificial membranes apply to biological systems. 相似文献
12.
《Journal of biochemical and biophysical methods》2008,70(3):441-444
Phospholipase A2 is an important enzyme in various pathologies. Although fluorescent substrate assays for it have been recently developed, there is a need for an assay with inexpensive commercially available substrates, useful when samples interfered with fluorescent assays, that is nonisotopic, continuous, conducted at physiological pH, and in a 96 well format. A reaction using bromothymol blue was developed that meets all these requirements. 相似文献
13.
14.
C Balet K A Clingman J Hajdu 《Biochemical and biophysical research communications》1988,150(2):561-567
1-Palmitoyl-2-thiopalmitoyl phosphatidylcholine (2-thioPC), a structurally modified phospholipid analog is specifically hydrolyzed by phospholipase A2 to liberate 2-thiolysophosphatidylcholine and palmitic acid. The sulfhydryl group of the product is readily trapped by 5,5'-dithiobis (2-nitrobenzoic acid) allowing continuous spectrophotometric monitoring of the enzymatic reaction. The rates of hydrolysis by bee-venom phospholipase A2 have been determined in a series of Triton X-100 containing mixed micelles. At 1 mM 2-thioPC increasing the concentration of Triton X-100 from 4 to 16 mM changes the specific activity of bee-venom phospholipase A2 from 96.9 to 17.9 mumol/min/mg, about one order of magnitude lower than dipalmitoyl phosphatidylcholine hydrolysis in micelles of similar composition. The chromogenic substrate is the first phospholipid analog exhibiting absolute specificity for phospholipase A2 and should be applicable to spectrophotometric detection and kinetic characterization of both water soluble and membrane-bound forms. 相似文献
15.
F F Davidson J Hajdu E A Dennis 《Biochemical and biophysical research communications》1986,137(2):587-592
1-stearyl, 2-stearoylaminodeoxy phosphatidylcholine, a structurally modified phospholipid substrate analog exhibits potent and reversible inhibition of phospholipase A2 from cobra venom (N. naja naja). The apparent KI values determined in two different assay systems employing phosphatidylcholine-surfactant mixed micelles are in reasonable agreement (40 microM and 16 microM) and indicate that the inhibitor binds to the enzyme as much as two orders of magnitude more tightly than does dipalmitoyl phosphatidylcholine. With phosphatidylethanolamine as substrate, the kinetics are more complicated as the analog also exhibits activation, presumably at a second binding site on the enzyme. 相似文献
16.
Modulation of cytosolic phospholipase A(2) (cPLA(2)) activity by sphingomyelin (SPH), ceramide (Cer), and cholesterol (Chol) was investigated in CHO-2B cells activated by the calcium ionophore A23187 and epinephrine. Chol depletion of CHO-2B cells by treatment with methyl-beta-cyclodextrin (5 mm) resulted in the inhibition of the release of arachidonic acid whereas the restoration of the level by Chol-loaded cyclodextrin relieved inhibition. Conversion of CHO-2B cellular SPH to Cer by Staphylococcus aureus sphingomyelinase enhanced endogenous cPLA(2) activation as well as uptake by cells of C2- and C6-ceramide analogs. These results were confirmed in vitro with purified human recombinant cPLA(2) acting on a model phospholipid substrate. The enzyme activity was inhibited by SPH but reactivated by Cer as well as by Chol added to glycerophospholipid liposomal substrates containing SPH. The results of this study, which combine in situ and in vivo experimental approaches, indicate that membrane microdomains enriched in SPH and Chol play a role in the modulation of the activity of cPLA2 and in arachidonic acid-derived mediator production. 相似文献
17.
Best KB Ohran AJ Hawes AC Hazlett TL Gratton E Judd AM Bell JD 《Biochemistry》2002,41(47):13982-13988
Normally, cell membranes resist hydrolysis by secretory phospholipase A(2). However, upon elevation of intracellular calcium, the cells become susceptible. Previous investigations demonstrated a possible relationship between changes in lipid order caused by increased calcium and susceptibility to phospholipase A(2). To further explore this relationship, we used temperature as an experimental means of manipulating membrane physical properties. We then compared the response of human erythrocytes to calcium ionophore at various temperatures in the range of 20-50 degrees C using fluorescence spectroscopy and two-photon fluorescence microscopy. The steady state fluorescence emission of the environment-sensitive probe, laurdan, revealed that erythrocyte membrane order decreases systematically with temperature throughout this range, especially between 28 and 45 degrees C. Furthermore, the ability of calcium ionophore to induce increased membrane order and susceptibility to phospholipase A(2) depended similarly on temperature. Both responses to calcium influx were enhanced as membrane fluidity increased. Analysis of the spatial distribution of laurdan fluorescence at several temperatures indicated that the ordering effect of intracellular calcium on fluid membranes generates an increase in the number of fluid-solid boundaries. Hydrolysis of the membrane appeared to progress outward from these boundaries. We conclude that phospholipase A(2) prefers to hydrolyze lipids in fluid regions of human erythrocyte membranes, but primarily when those regions coexist with domains of ordered lipids. 相似文献
18.
19.
Mechanisms governing the level of susceptibility of erythrocyte membranes to secretory phospholipase A2 下载免费PDF全文
Jensen LB Burgess NK Gonda DD Spencer E Wilson-Ashworth HA Driscoll E Vu MP Fairbourn JL Judd AM Bell JD 《Biophysical journal》2005,88(4):2692-2705
Although cell membranes normally resist the hydrolytic action of secretory phospholipase A(2) (sPLA(2)), they become susceptible during apoptosis or after cellular trauma. Experimentally, susceptibility to the enzyme can be induced by loading cells with calcium. In human erythrocytes, the ability of the calcium ionophore to cause susceptibility depends on temperature, occurring best above approximately 35 degrees C. Considerable evidence from experiments with artificial bilayers suggests that hydrolysis of membrane lipids requires two steps. First, the enzyme adsorbs to the membrane surface, and second, a phospholipid diffuses from the membrane into the active site of the adsorbed enzyme. Analysis of kinetic experiments suggested that this mechanism can explain the action of sPLA(2) on erythrocyte membranes and that temperature and calcium loading promote the second step. This conclusion was further supported by binding experiments and assessment of membrane lipid packing. The adsorption of fluorescent-labeled sPLA(2) was insensitive to either temperature or ionophore treatment. In contrast, the fluorescence of merocyanine 540, a probe sensitive to lipid packing, was affected by both. Lipid packing decreased modestly as temperature was raised from 20 to 60 degrees C. Calcium loading enhanced packing at temperatures in the low end of this range, but greatly reduced packing at higher temperatures. This result was corroborated by measurements of the rate of extraction of a fluorescent phosphatidylcholine analog from erythrocyte membranes. Furthermore, drugs known to inhibit susceptibility in erythrocytes also prevented the increase in phospholipid extraction rate. These results argue that the two-step model applies to biological as well as artificial membranes and that a limiting step in the hydrolysis of erythrocyte membranes is the ability of phospholipids to migrate into the active site of adsorbed enzyme. 相似文献
20.
Effect of membrane sterol content on the susceptibility of phospholipids to phospholipase A2 总被引:1,自引:0,他引:1
G J Fisher C E Freter R C Ladenson D F Silbert 《The Journal of biological chemistry》1983,258(19):11705-11712
The effects of membrane sterol level on the susceptibility of LM cell plasma membranes to exogenous phospholipases A2 has been investigated. Isolated plasma membranes, containing normal or decreased sterol content, were prepared from mutant LM cell sterol auxotrophs. beta-Bungarotoxin-catalyzed hydrolysis of both endogenous phospholipids and phospholipids introduced into the membranes with beef liver phospholipid exchange proteins was monitored. In both cases, phosphatidylcholine (PC) and phosphatidylethanolamine (PE) were degraded at similar rates in normal membranes, while PC hydrolysis was specifically accelerated in sterol-depleted membranes. Additional data suggest that this preferential hydrolysis of PC is not a consequence of the phospholipid head group specificity of the phospholipase, nor of a difference in the accessibility of PC versus PE to the enzyme. Analysis of the reaction products formed during treatment of isolated membranes with phospholipase A2 showed almost no accumulation of lysophospholipids. This was found to be due to highly active lysophospholipase(s), present in LM cell plasma membranes, acting on the lysophospholipids formed by phospholipase A2 action. A soluble phospholipase A2 was partially purified from LM cells and found to behave as beta-bungarotoxin with regard to membrane sterol content. These results demonstrate that the nature of phospholipid hydrolysis, catalyzed by phospholipase A2, can be significantly affected by membrane lipid composition. 相似文献