首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Poly(rA) binds poly(rG).poly(rC) to form a triple helix. Evidence for this structure includes ultraviolet absorbance mixing curves and melting curves, and circular dichroism spectroscopy. The formation of the triple helix depends on the length of the poly(rC) strand. Triple helix forms when the average length is around 100 nucleotides but does not form when the average length is about 500 nucleotides.  相似文献   

2.
During picornavirus infection, several cellular proteins are cleaved by virus-encoded proteinases. Such cleavage events are likely to be involved in the changing dynamics during the intracellular viral life cycle, from viral translation to host shutoff to RNA replication to virion assembly. For example, it has been proposed that there is an active switch from poliovirus translation to RNA replication mediated by changes in RNA-binding protein affinities. This switch could be a mechanism for controlling template selection for translation and negative-strand viral RNA synthesis, two processes that use the same positive-strand RNA as a template but proceed in opposing directions. The cellular protein poly(rC)-binding protein (PCBP) was identified as a primary candidate for regulating such a mechanism. Among the four different isoforms of PCBP in mammalian cells, PCBP2 is required for translation initiation on picornavirus genomes with type I internal ribosome entry site elements and also for RNA replication. Through its three K-homologous (KH) domains, PCPB2 forms functional protein-protein and RNA-protein complexes with components of the viral translation and replication machinery. We have found that the isoforms PCBP1 and -2 are cleaved during the mid-to-late phase of poliovirus infection. On the basis of in vitro cleavage assays, we determined that this cleavage event was mediated by the viral proteinases 3C/3CD. The primary cleavage occurs in the linker between the KH2 and KH3 domains, resulting in truncated PCBP2 lacking the KH3 domain. This cleaved protein, termed PCBP2-DeltaKH3, is unable to function in translation but maintains its activity in viral RNA replication. We propose that through the loss of the KH3 domain, and therefore loss of its ability to function in translation, PCBP2 can mediate the switch from viral translation to RNA replication.  相似文献   

3.
Polymorphic RNA conformations may serve as potential targets for structure specific antiviral agents. As an initial step in the development of such drugs, the interaction of a wide variety of compounds which are characterized to bind to DNA through classical or partial intercalation or by mechanism of groove binding, with the A-form and the protonated form of poly(rC).poly(rG), been evaluated by multifaceted spectroscopic and viscometric techniques. Results of this study suggest that (i) ethidium intercalates to the A-form of RNA, but does not intercalate to the protonated form, (ii) methylene blue intercalates to the protonated form of the RNA but does not intercalate to the A-form, (iii) actinomycin D does not bind to either conformations of the RNA, and (iv) berberine binds to the protonated form by partial intercalation process, while its binding to the A-form is very weak. The DNA groove binder distamycin A has much higher affinity to the protonated form of the RNA compared to the A-form and binds to both structures by non-intercalative mechanism. We conclude that the binding affinity characteristics of these DNA binding molecules to the RNA conformations are vastly different and may serve as data for the development of RNA based antiviral drugs.  相似文献   

4.
A key step in the rational design of new RNA binding small molecules necessitates a complete elucidation of the molecular aspects of the binding of existing molecules to RNA structures. This work focuses towards the understanding of the interaction of a DNA intercalator, quinacrine and a minor groove binder 4′,6-diamidino-2-phenylindole (DAPI) with the right handed Watson–Crick base paired A-form and the left-handed Hoogsteen base paired HL-form of poly(rC)·poly(rG) evaluated by multifaceted spectroscopic and viscometric techniques. The energetics of their interaction has also been elucidated by isothermal titration calorimetry. Results of this study converge to suggest that (i) quinacrine intercalates to both A-form and HL-form of poly(rC)·poly(rG); (ii) DAPI shows both intercalative and groove-binding modes to the A-form of the RNA but binds by intercalative mode to the HL-form. Isothermal calorimetric patterns of quinacrine binding to both the forms of RNA and of DAPI binding to the HL-form are indicative of single binding while the binding of DAPI to the A-form reveals two kinds of binding. The binding of both the drugs to both conformations of RNA is exothermic; while the binding of quinacrine to both conformations and DAPI to the A-form (first site) is entropy driven, the binding of DAPI to the second site of A-form and HL-conformation is enthalpy driven. Temperature dependence of the binding enthalpy revealed that the RNA–ligand interaction reactions are accompanied by small heat capacity changes that are nonetheless significant. We conclude that the binding affinity characteristics and energetics of interaction of these DNA binding molecules to the RNA conformations are significantly different and may serve as data for the development of effective structure selective RNA-based antiviral drugs.  相似文献   

5.
A key step in the rational design of new RNA binding small molecules necessitates a complete elucidation of the molecular aspects of the binding of existing molecules to RNA structures. This work focuses towards the understanding of the interaction of a DNA intercalator, quinacrine and a minor groove binder 4',6-diamidino-2-phenylindole (DAPI) with the right handed Watson-Crick base paired A-form and the left-handed Hoogsteen base paired H(L)-form of poly(rC).poly(rG) evaluated by multifaceted spectroscopic and viscometric techniques. The energetics of their interaction has also been elucidated by isothermal titration calorimetry. Results of this study converge to suggest that (i) quinacrine intercalates to both A-form and H(L)-form of poly(rC).poly(rG); (ii) DAPI shows both intercalative and groove-binding modes to the A-form of the RNA but binds by intercalative mode to the H(L)-form. Isothermal calorimetric patterns of quinacrine binding to both the forms of RNA and of DAPI binding to the H(L)-form are indicative of single binding while the binding of DAPI to the A-form reveals two kinds of binding. The binding of both the drugs to both conformations of RNA is exothermic; while the binding of quinacrine to both conformations and DAPI to the A-form (first site) is entropy driven, the binding of DAPI to the second site of A-form and H(L)-conformation is enthalpy driven. Temperature dependence of the binding enthalpy revealed that the RNA-ligand interaction reactions are accompanied by small heat capacity changes that are nonetheless significant. We conclude that the binding affinity characteristics and energetics of interaction of these DNA binding molecules to the RNA conformations are significantly different and may serve as data for the development of effective structure selective RNA-based antiviral drugs.  相似文献   

6.
Human embryonic fibroblasts produce interferon when incubated at 37 degrees C after being treated at 4 degrees C with poly(rI) - poly(rC), either by addition of the double-stranded duplex or by sequential addition of the constitutent single-stranded polynucleotides. Cells which have been incubated with double-stranded poly(rI) - poly(rC) can be prevented from forming interferon by washing the cells with high concentrations of salt, immediately after adsorption of polynucleotides, or by incubation of the cells with single-stranded polynucleotides. The inhibition is probably due to displacement of the inducing molecule from the cell surface. Interferon production by cells treated sequentially with poly(rI) and poly(rC) is not inhibited by either of these treatments and the polynucleotides are not easily displaced from the cell surface.  相似文献   

7.
8.
Self-deconvolution and the fourth derivative of ultraviolet absorption spectra have been used to study stacked single-stranded and double-helix structures of different cytosine-containing polynucleotides for the first time. These compounds were studied under different solution conditions (pH and organic solvents) and at low temperatures. The red shift of the lower band (B2u band plus possibly some n-->pi* transition) of the absorption spectra in the cytosine-containing polynucleotides and the appearance of new peaks in the deconvoluted and derivative spectra in the 280-310 nm region are attributed mainly to cytosine-cytosine stacking interactions. In particular, the fourth-derivative peaks at wavelengths higher than 290 nm can be associated to coupling of electronic transitions of cytosine bases. The nature of the electronic transitions producing the absorption bands which are resolved in the aforementioned fourth-derivative peaks is discussed. It is concluded that the resolution-enhancement techniques used in this work, i.e. self-deconvolution and fourth derivative, complement each other and are useful methods to study structural changes of single-stranded and double-stranded polynucleotides allowing, at the same time, more information to be obtained about specific stacking interactions than classical absorption spectrophotometry.  相似文献   

9.
10.
We have used the yeast two-hybrid system to isolate proteins that interact with the carboxy-terminal SH3-SH2-SH3 region of Vav. One of the clones encoded heterogeneous nuclear ribonucleoprotein K (hnRNP K), a poly(rC)-specific RNA-binding protein. The interaction between Vav and hnRNP K involves the binding of the most carboxy-terminal SH3 domain of Vav to two proline-rich sequences present in the central region of hnRNP K. Overexpression of Vav in mouse fibroblasts leads to the formation of a stable complex with the endogenous hnRNP K and to the preferential redistribution of this protein to the cytoplasmic fraction. More importantly, Vav and hnRNP K proteins also interact in hematopoietic cells. In addition, Vav associates in vitro with a second 45-kDa poly(rC)-specific RNA-binding protein via its SH3-SH2-SH3 region. These results suggest that Vav plays a role in the regulation of the late steps of RNA biogenesis by modulating the function of poly(rC)-specific ribonucleoproteins.  相似文献   

11.
Cisplatin (cis-diamminedichloroplatinum(II] is widely used in the treatment of various human tumours. A large body of experimental evidence indicates that the reaction of cisplatin with DNA is responsible for the cytostatic action of this drug. Several platinum-DNA adducts have been identified and their effect on the conformation of DNA has been investigated. Structural studies of platinum-DNA adducts now permit a reasonably good explanation of the biophysical properties of platinated DNA. Antitumouractive platinum compounds induce in DNA, at low levels of binding, local conformational alterations which have the character of non-denaturing distortions. It is likely that these changes occur in DNA due to the formation of intrastrand cross-links between two adjacent purine residues. On the other hand, the modification of DNA by antitumour-inactive complexes results in the formation of more severe local denaturation changes. Conformational alterations induced in DNA by antitumour-active platinum compounds may be reparable with greater difficulty than those induced by the inactive complexes. Alternatively, non-denaturation change induced in DNA by antitumour platinum drugs could represent more significant steric hindrance against DNA replication as compared with inactive complexes.  相似文献   

12.
D K Chang  D R Kearns 《Biopolymers》1986,25(7):1283-1297
The distribution of bound Mn2+ ions about poly(rI)·poly(rC) has been studied by measuring the effect of this paramagnetic metal ion on the relaxation behavior of poly(rI)·poly(rC) protons. By combining selective spin – lattice and spin – spin relaxation rates for various protons, some of the principle regions of ion association can be identified. The relaxation data on the CH6 proton are consistent with a < 10% occupancy of phosphate inner-sphere binding sites. The broadening of the imino proton resonance requires a substantial occupancy of sites located in the major groove, possibly near IN7. This would also be consistent with the observation that IH8 resonance is the proton most susceptible to relaxation by Mn2+. The relaxation data for the IH2 proton indicate a relatively low occupancy of minor-groove binding sites (e.g., IN3).  相似文献   

13.
Proton exchange of poly(rA).poly(rU) and poly(rI).poly(rC) has been studied by nuclear magnetic resonance line broadening and saturation transfer from H2O. Five exchangeable peaks are observed. They are assigned to the imino, amino and 2'-OH ribose protons. The aromatic spectrum is also assigned. Contrary to previous observations, we find that the exchange of the imino proton is strongly buffer sensitive. This property is used to derive the base-pair lifetime, which is in the range of milliseconds at 27 degrees C, 100 times smaller than published values. The enthalpy for the base-opening reaction (-86 kJ/mol) and the insensitivity of the reaction to magnesium suggest that the open state involves a small number of base-pairs. The similarities in the exchange from the two duplexes indicate that the same open state is responsible for exchange of purine and pyrimidine imino protons. For the lifetime of the open state and for the base-pair dissociation constant, we obtain only lower limits. At 27 degrees C they are three microseconds and 10(-3), respectively. The analysis that yields the much larger values published previously is based on the assumption that amino protons exchange only from open base-pairs. But theory and preliminary experiments indicate that it may occur from the closed duplex. The exchange of amino protons is slower than that of the imino protons. Exchange of the 2'-OH protons from the duplexes is much slower than from single-stranded poly(rU), and it is accelerated by magnesium. This could indicate hydrogen-bonding to backbone phosphate. Discrepancies between our results and those of previous studies are discussed.  相似文献   

14.
15.
16.
The inhibition of hepatic microsomal cytochrome P450 and cytochrome b5 levels by poly(rI.rC) and aspirin in vitro was studied in male Swiss mice. Poly(rI.rC) (10 mg/kg) decreases cytochrome P450 to a level of 61% and cytochrome b5 to 31%, while the activity of aminopyrine demethylase was decreased to 66%. Aspirin (200 mg/kg) decreased the level of cytochrome P450 and cytochrome b5 to 45 and 23%, respectively. Further studies on the effect of poly(rI.rC) showed that this decrease in the levels of cytochromes was mainly due to alteration in the protein synthesis of these hemoproteins.  相似文献   

17.
A study of the interaction between poly(dG)-poly(dC) and poly(rC) demonstrates that, at neutral pH and high ionic strength, there is replacement of the dC strand by poly(rC). At acid pH, formation of a triple-stranded complex which equally may involve the replacement phenomenon is observed. There is no evidence for interaction at neutral pH between poly(dG)-poly(dC) and oligo(rC), while a three-stranded complex is formed at acid pH. These data are consistent with the studies of comparative stabilities of double stranded deoxy or ribo polymers and deoxy-ribo hybrids.  相似文献   

18.
The interaction of actinocin derivative Act III with single- and double-stranded poly(rC) has been investigated by the methods of differential scanning microcalorimetry and UV-vis absorption spectroscopy. It was shown that, after the addition of the ligand, the temperature, enthalpy and entropy of poly (rC) melting decrease. The analysis of poly(rC)-ActIII absorption spectra indicated that the conformation of polynucleotide differs from that of free poly (rC) in the presence of ActHI at pH 4.46 and pH 6.0. Using the DALSMOD optimization program, the parameters of interaction of Act III with poly (rC) were calculated. It was found that the binding constant of ActHI with double-stranded poly (rC) is essentially higher than that with the single-stranded one upon monomeric binding. On the basis of these data, we conclude that the conformation changes of the matrix are the main cause of the decrease in melting temperature and enthalpy observed by calorimetry. Possible mechanisms of interaction of actinocin derivative with poly (rC) are discussed.  相似文献   

19.
We are studying the enzymatic modification of polycyclic aromatic hydrocarbons (PAHs) by the laccase from Coriolopsis gallica UAMH 8260. The enzyme was produced during growth in a stirred tank reactor to 15 units ml−1, among the highest levels described for a wild-type fungus; the enzyme was the major protein produced under these conditions. After purification, it exhibited characteristics typical of a white rot fungal laccase. Fifteen azo and phenolic compounds at 1 mM concentration were tested as mediators in the laccase oxidation of anthracene. Higher anthracene oxidation was obtained with the mediator combination of ABTS and HBT, showing a correlation between the oxidation rate and the mediator concentration. Reactions with substituted phenols and anilines, conventional laccase substrates, and PAHs were compared using the native laccase and enzyme preparations chemically modified with 5000 MW-poly(ethylene glycol). Chemically modified laccase oxidized a similar range of substituted phenols as the native enzyme but with a higher catalytic efficiency. The k cat increase by the chemical modification may be as great as 1300 times for syringaldazine oxidation. No effect was found of chemical modification on mediated PAH oxidation. Both unmodified and PEG-modified laccases increased PAH oxidation up to 1000 times in the presence of radical mediators. Thus, a change of the protein surface improves the mediator oxidation efficiency, but does not affect non-enzymatic PAH oxidation by oxidized mediators. Received 10 December 2001/ Accepted in revised form 20 July 2002  相似文献   

20.
Duplex DNA containing oligo(dG.dC)-rich clusters can be isolated by specific binding to poly(rC)-Sephadex. This binding, probably mediated by the formation of an oligo(dG.dC)rC+ triple helix, is optimal at pH 5 in 50% formamide, 2 M LiCl; the bound DNA is recovered by elution at pH 7.5. Using this method we find that the viral DNAs PM2, lambda and SV40 contain at least 1, 1 and 2 sites for binding to poly(rC)-Sephadex, respectively. These binding sites have been mapped in the case of SV40; the binding sites can in turn be used for physical mapping studies of DNAs containing (dG.dC) clusters. Inspection of the sequence of the bound fragments of SV40 DNA shows that a (dG.dC)6-7 tract is required for the binding of duplex DNA to poly(rC)-Sephadex. Although about 60% of rabbit DNA cleaved with restriction endonuclease KpnI binds to poly(rC)-Sephadex, no binding is observed for the 5.1 kb DNA fragment generated by KpnI digestion, which contains the rabbit beta-globin gene. This indicates that oligo(dG.dC) clusters are not found close to the rabbit beta-globin gene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号