首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Biogeochemical and microbiological characterization of marine sediments taken from the Yellow Sea of South Korea was carried out. One hundred and thirty six bacterial strains were isolated, characterized and phylogenetic relationship was evaluated. The gene sequences of 16S rDNA regions were examined to study the phylogenetic analysis of bacterial community in the marine sediments. Among 136 isolates, 5 bacterial isolates were identified as novel members, remaining 131 isolates were fall into 5 major linkages of bacterial phyla represented as follows: Firmicutes, alpha, gamma-Proteobacteria, High G + C and Bacteroidetes. Bacterial community in sediments mainly dominated by Firmicutes (58.77%) and followed by gamma-Pateobacteria (38.16%). Gamma-Proteobacteria domain highly diverged and mainly consists of the genera Vibrio, Marinobacterium, Photobacterium, Pseudoalteromonas, Oceanisphaera, Halomonas, Alteromonas, Stenotrophomonas and Pseudomonas. Total N and Organic matter content in Yellow Sea of South Korea were relatively high. The Total-N content in the sediments was varied from 177.31 to 1974.96 (mg/kg) and organic matter ranged from 0.82 to 4.23 (g/100 g). The current research work provides clear explanation obtained for the phylogenetic affiliation of the culturable bacterial community in sediments of South Korean Yellow Sea and revealed the relationship with biogeochemical characteristics of the sediments.  相似文献   

2.
Culture-independent molecular techniques, 16S rDNA clone library alongside RFLP and phylogenetic analysis, were applied to investigate the bacterial diversity associated with three South China Sea sponges, Stelletta tenui, Halichondria rugosa and Dysidea avara. A wide bacterial diversity was detected according to total genomic DNA-based 16S rDNA clone library, abundant clones with low identify with sequences retrieved from database were found as well as uncultured sponge symbionts. The phylogenetic analysis shows that the bacterial community structure of Stelletta tenui is similar to that of Halichondria rugosa comprising gamma-Proteobacteria and Firmicutes. Whereas, alpha-Proteobacteria, gamma-Protebacteria, Bacteroidetes and uncultured sponge symbionts were found in sponge Dysidea avara, suggesting that Dysidea avara has the highest bacteria diversity among these sponges. A specific sponge–microbe association is suggested based on the difference of bacterial diversity among these three sponges from the same geography location and the observed sponge species-specific bacteria.  相似文献   

3.
The South China Sea, which is one of the largest marginal seas in the world, is predicted to have suitable accumulation conditions and exporting prospects for natural gas hydrate. The aim of this study was to explore the bacterial community composition of deep-sea sediments from such an ecosystem. DNA was extracted by five different methods and used as templates for PCR amplification of the V3 regions of the 16S rRNA gene. Denaturing gradient gel electrophoresis (DGGE) was used to separate the amplified products and analyse the 16S rRNA gene diversity of sediment samples. The results of DGGE indicated that the bacterial community composition is influenced by DNA extraction methods. Sequencing dominant bands demonstrated that the major phylogenetic groups identified by DGGE belong to Proteobacteria, Bacteroidetes, gram-positive bacteria and Archaea. Integrating different DNA extraction procedures are needed to analyse the actual bacterial diversity from environment when the amplification of 16S rRNA gene and construction of representative clone library were adopted.  相似文献   

4.
Species diversity, phylogenetic affiliations, and environmental occurrence patterns of thiosulfate-oxidizing marine bacteria were investigated by using new isolates from serially diluted continental slope and deep-sea abyssal plain sediments collected off the coast of New England and strains cultured previously from Galapagos hydrothermal vent samples. The most frequently obtained new isolates, mostly from 103- and 104-fold dilutions of the continental slope sediment, oxidized thiosulfate to sulfate and fell into a distinct phylogenetic cluster of marine alpha-Proteobacteria. Phylogenetically and physiologically, these sediment strains resembled the sulfate-producing thiosulfate oxidizers from the Galapagos hydrothermal vents while showing habitat-related differences in growth temperature, rate and extent of thiosulfate utilization, and carbon substrate patterns. The abyssal deep-sea sediments yielded predominantly base-producing thiosulfate-oxidizing isolates related to Antarctic marine Psychroflexus species and other cold-water marine strains of the Cytophaga-Flavobacterium-Bacteroides phylum, in addition to gamma-proteobacterial isolates of the genera Pseudoalteromonas and Halomonas-Deleya. Bacterial thiosulfate oxidation is found in a wide phylogenetic spectrum of Flavobacteria and Proteobacteria.  相似文献   

5.
Li Z  He L  Miao X 《Current microbiology》2007,55(6):465-472
The cultivable bacterial communities associated with four South China Sea sponges—Stelletta tenuis, Halichondria rugosa, Dysidea avara, and Craniella australiensis in mixed cultures—were investigated by microbial community DNA-based DGGE fingerprinting and 16S rDNA phylogenetic analysis. Diverse bacteria such as α-, γ-, δ-Proteobacteria, Bacteroidetes, and Firmicutes were cultured, some of which were previously uncultivable bacteria, potential novel strains with less than 95% similarity to their closest relatives and sponge symbionts growing only in the medium with the addition of sponge extract. According to 16S rDNA BLAST analysis, most of the bacteria were cultured from sponge for the first time, although similar phyla of bacteria have been previously recognized. The selective pressure of sponge extract on the cultured bacterial species was suggested, although the effect of sponge extract on bacterial community in high nutrient medium is not significant. Although α- and γ-Proteobacteria appeared to form the majority of the dominant cultivable bacterial communities of the four sponges, the composition of the cultivable bacterial community in the mixed culture was different, depending on the medium and sponge species. Greater bacterial diversity was observed in media C and CS for Stelletta tenuis, in media F and FS for Halichondria rugosa and Craniella australiensis. S. tenuis was found to have the highest cultivable bacterial diversity including α-, γ-, δ-Proteobacteria, Bacteroidetes, and Firmicutes, followed by sponge Dysidea avara without δ-Proteobacteria, sponge Halichondria rugosa with only α-, γ-Proteobacteria and Bacteroidetes, and sponge C. australiensis with only α-, γ-Proteobacteria and Firmicutes. Based on this study, by the strategy of mixed cultivation integrated with microbial community DNA-based DGGE fingerprinting and phylogenetic analysis, the cultivable bacterial community of sponge could be revealed effectively.  相似文献   

6.
A newly reported 16S rRNA gene-based PCR primer set was successfully applied to detect anammox bacteria from four ecosystem samples, including sediments from marine, reservoir, mangrove wetland, and wastewater treatment plant sludge. This primer set showed ability to amplify a much wider coverage of all reported anammox bacterial genera. Based on the phylogenetic analyses of 16S rRNA gene of anammox bacteria, two new clusters were obtained, one closely related to Candidatus Scalindua, and the other in a previously reported novel genus related to Candidatus Brocadia. In the Scalindua cluster, four new subclusters were also found in this study, mainly by sequences of the South China Sea sediments, presenting a higher diversity of Candidatus Scalindua in marine environment. Community structure analyses indicated that samples were grouped together based on ecosystems, showing a niche-specific distribution. Phylogenetic analyses of anammox bacteria in samples from the South China Sea also indicated distinguished community structure along the depth. Pearson correlation analysis showed that the amount of anammox bacteria in the detected samples was positively correlated with the nitrate concentration. According to Canonical Correspondence Analysis, pH, temperature, nitrite, and nitrate concentration strongly affected the diversity and distribution of anammox bacteria in South China Sea sediments. Results collectively indicated a promising application of this new primer set and higher anammox bacteria diversity in the marine environment.  相似文献   

7.
Planktonic bacteria are abundant in the Bering Sea. However, very little is known about their diversity and the roles of various bacteria in the ocean. Bacterioplankton diversity in the northern Bering Sea was investigated using a combination of molecular and cultivation-based methods. Community fingerprint analysis using polymerase chain reaction-denaturing gradient gel electrophoresis revealed an apparent difference in the bacterioplankton community composition between sampling locations in the area. The bacterial communities were characterized by two 16S rRNA gene clone libraries for surface and bottom water at shallow station NEC5 (<60 m in depth) on the continental shelf. Sequences fell into 21 major lineages of the domain Bacteria, including Proteobacteria (Alpha, Beta, Gamma, and Delta), Bacteroidetes, Actinobacteria, Firmicutes, Acidobacteria, Planctomycetes, Verrucomicrobia, Fusobacteria, Chlamydiae, Chloroflexi, Chlorobi, Spirochaetes, Cyanobacteria (or algal chloroplasts), and candidate divisions OP8, OP11, TM6, TM7, and WS3. Significant differences were found between the two clone libraries. Actinobacteria formed the dominant bacterial lineage in both surface and bottom water, and the Alphaproteobacteria was another dominant fraction in surface water. A total of 232 heterotrophic bacterial strains were isolated and 81% showed extracellular proteolytic activity. Phylogenetic analysis revealed that the isolates fell into three bacterial groups, including the Gammaproteobacteria, Actinobacteria, and Firmicutes. The most common genus in both the bacterial isolates and protease-producing bacteria was Pseudoalteromonas. Divergence of bacterial community composition in the northern Bering Sea was mainly characterized by the dominance of Actinobacteria and reflected a bacterial community different from that currently known for marine bacterioplankton communities in other polar regions.  相似文献   

8.
In this report, the diversity of Actinobacteria associated with the marine sponge Hymeniacidon perleve collected from a remote island of the South China Sea was investigated employing classical cultivation and characterization, 16S rDNA library construction, 16S rDNA-restriction fragment length polymorphism (rDNA-RFLP) and phylogenetic analysis. A total of 184 strains were isolated using seven different media and 24 isolates were selected according to their morphological characteristics for phylogenetic analysis on the basis of their 16S rRNA gene sequences. Results showed that the 24 isolates were assigned to six genera including Salinispora, Gordonia, Mycobacterium, Nocardia, Rhodococcus and Streptomyces. This is the first report that Salinispora is present in a marine sponge from the South China Sea. Subsequently, 26 rDNA clones were selected from 191 clones in an Actinobacteria-specific 16S rDNA library of the H. perleve sample, using the RFLP technique for sequencing and phylogenetic analysis. In total, 26 phylotypes were clustered in eight known genera of Actinobacteria including Mycobacterium, Amycolatopsis, Arthrobacter, Brevibacterium, Microlunatus, Nocardioides, Pseudonocardia and Streptomyces. This study contributes to our understanding of actinobacterial diversity in the marine sponge H. perleve from the South China Sea.  相似文献   

9.
Shifts in bacterioplankton community composition along the salinity gradient of the Parker River estuary and Plum Island Sound, in northeastern Massachusetts, were related to residence time and bacterial community doubling time in spring, summer, and fall seasons. Bacterial community composition was characterized with denaturing gradient gel electrophoresis (DGGE) of PCR-amplified 16S ribosomal DNA. Average community doubling time was calculated from bacterial production ([14C]leucine incorporation) and bacterial abundance (direct counts). Freshwater and marine populations advected into the estuary represented a large fraction of the bacterioplankton community in all seasons. However, a unique estuarine community formed at intermediate salinities in summer and fall, when average doubling time was much shorter than water residence time, but not in spring, when doubling time was similar to residence time. Sequencing of DNA in DGGE bands demonstrated that most bands represented single phylotypes and that matching bands from different samples represented identical phylotypes. Most river and coastal ocean bacterioplankton were members of common freshwater and marine phylogenetic clusters within the phyla Proteobacteria, Bacteroidetes, and Actinobacteria. Estuarine bacterioplankton also belonged to these phyla but were related to clones and isolates from several different environments, including marine water columns, freshwater sediments, and soil.  相似文献   

10.
Du J  Xiao K  Huang Y  Li H  Tan H  Cao L  Lu Y  Zhou S 《Antonie van Leeuwenhoek》2011,100(3):317-331
This study was conducted to characterize the diversity of microbial communities in marine sediments of the South China Sea by means of 16S rRNA gene clone libraries. The results revealed that the sediment samples collected in summer harboured a more diverse microbial community than that collected in winter, Deltaproteobacteria dominated 16S rRNA gene clone libraries from both seasons, followed by Gammaproteobacteria, Acidobacteria, Nitrospirae, Planctomycetes, Firmicutes. Archaea phylotypes were also found. The majority of clone sequences shared greatest similarity to uncultured organisms, mainly from hydrothermal sediments and cold seep sediments. In addition, the sedimentary microbial communities in the coastal sea appears to be much more diverse than that of the open sea. A spatial pattern in the sediment samples was observed that the sediment samples collected from the coastal sea and the open sea clustered separately, a novel microbial community dominated the open sea. The data indicate that changes in environmental conditions are accompanied by significant variations in diversity of microbial communities at the South China Sea.  相似文献   

11.
The Southern Okinawa Trough is an area of focused sedimentation due to particulate matter export from the shelf of the East China Sea and the island of Taiwan. In order to understand the geomicrobiological characteristics of this unique sedimentary environment, bacterial cultivations were carried out for an 8.61 m CASQ core sediment sample. A total of 98 heterotrophic bacterial isolates were characterized based on 16S rRNA gene phylogenetic analysis. These isolates can be grouped into four bacterial divisions, including 13 genera and more than 20 species. Bacteria of the γ-Proteobacteria lineage, especially those from the Halomonas (27 isolates) and Psychrobacter (20 isolates) groups, dominate in the culturable bacteria assemblage. They also have the broadest distribution along the depth of the sediment. More than 72.4% of the isolates showed extracellular hydrolytic enzyme activities, such as amylases, proteases, lipases and Dnases, and nearly 59.2% were cold-adapted exoenzyme-producers. Several Halomonas strains show almost all the tested hydrolases activities. The wide distribution of exoenzyme activities in the isolates may indicate their important ecological role of element biogeochemical cycling in the studied deep-sea sedimentary environment.  相似文献   

12.
In this study we performed a phylogenetic analysis of a culturable bacterial community isolated from heavymetal-contaminated soil from southwest Slovakia using 16S rRNA (16S rDNA) and heavy-metal resistance genes. The soil sample contained high concentrations of nickel (2,109 mg/kg), cobalt (355 mg/kg) and zinc (177 mg/kg), smaller concentrations of iron (35.75 mg/kg) and copper (32.2 mg/kg), and a trace amount of cadmium (<0.25 mg/kg). A total of 100 isolates were grown on rich (Nutrient agar No. 2) or minimal (soil-extract agar medium) medium. The isolates were identified by phylogenetic analysis using partial sequences of their 16S rRNA (16S rDNA) genes. Representatives of two broad taxonomic groups, Firmicutes and Proteobacteria, were found on rich medium, whereas four taxonomic groups, Actinobacteria, Bacteroidetes, Firmicutes and Proteobacteria, were represented on minimal medium. Forty-two isolates grown on rich medium were assigned to 20 bacterial species, while 58 bacteria grown on minimal medium belonged to 49 species. Twenty-three isolates carried czcA- and/or nccA-like heavy-metal-resistance determinants. The heavy-metalresistance genes of nine isolates were identified by phylogenetic analysis of their protein sequences.  相似文献   

13.
The continental shelf and slope in the northern South China Sea is well known for its prospect of oil/gas/gas-hydrate resources. To study microbial communities and their roles in carbon cycling, a 4.9-m sediment core was collected from the Qiongdongnan Basin on the continental slope of the South China Sea during our cruise HY4-2005-5 in 2005. Geochemical, mineralogical, and molecular phylogenetic analyses were carried out. Sulfate concentration in pore water decreased with depth. Abundant authigenic carbonates and pyrite were observed in the sediments. The bacterial community was dominated by aerobic and facultative organisms. Bacterial clone sequences belonged to the Gamma-, Alpha-, Deltaproteobacteria and Firmicutes group, and they were related to Fe(III) and/or Mn(IV) reducers, sulfate reducers, aromatic hydrocarbon degraders, thiosulfate/sulfite oxidizers, and denitrifiers. Archaeal clone sequences exhibited greater overall diversity than the bacterial clones with most sequences related to Deep-Sea Archaeal Group (DSAG), Miscellaneous Crenarchaeotic Group (MCG), and Uncultured Euryarchaeotic Clusters (UECs). Archaeal sequences related to Methanosarcinales, South African Gold Mine Euryarchaeotic Group (SAGMEG), Marine Benthic Group-D (MBG-D) were also present. Most of these groups are commonly present in deep-sea sediments, particularly in methane/organic-rich or putative methane hydrate-bearing sediments.  相似文献   

14.
Archaea represent a significant portion of biomass in the marine sediments and may play an important role in global carbon cycle. However, the identity and composition of deep sea sediment Archaea are unclear. Here, we used the archaeal 16S rRNA gene primers to determine the diversity and community structure of Archaea from shallow water (<100 m) and deep water (>1500 m) sediments in the South China Sea. Phylogenetically the archaeal community is separated between the shallow- and deep sea sediments, with the former being dominated by the Thaumarchaeota and the latter by the Marine Benthic Group B, E and the South African GoldMine Euryarchaeotal Group as well as Thaumarchaeota. Sand content showed significant correlation with Thaumarchaeota, suggesting that the porous media may create an oxic environment that allowed these aerobic organisms to thrive in the surface sediments. The carbon isotope composition of total organic carbon was significantly correlated to the distribution of archaeal groups, suggesting that Archaea overall may be constrained by the availability or sources of organic carbon in the sediments of the South China Sea.  相似文献   

15.
Although the deep-sea sediments harbor diverse and novel bacteria with important ecological and environmental functions, a comprehensive view of their community characteristics is still lacking, considering the vast area and volume of the deep-sea sedimentary environments. Sediment bacteria vertical distribution and community structure were studied of the E272 site in the East Pacific Ocean with the molecular methods of 16S rRNA gene T-RFLP (terminal restriction fragment length polymorphism) and clone library analyses. Layered distribution of the bacterial assemblages was detected by both methods, indicating that the shallow sediments (40 cm in depth) harbored a diverse and distinct bacterial composition with fine-scale spatial heterogeneity. Substantial bacterial diversity was detected and nine major bacterial lineages were obtained, including Acidobacteria, Actinobacteria, Bacteroidetes, Chloroflexi, Nitrospirae, Planctomycetes, Proteobacteria, and the candidate divisions OP8 and TM6. Three subdivisions of the Proteobacteria presented in our libraries, including the α-, γ- and δ-Proteobacteria. Most of our sequences have low similarity with known bacterial 16S rRNA genes, indicating that these sequences may represent as-yet-uncultivated novel bacteria. Most of our sequences were related to the GenBank nearest neighboring sequences retrieved from marine sediments, especially from deep-sea methane seep, gas hydrate or mud volcano environments. Several sequences were related to the sequences recovered from the deep-sea hydrothermal vent or basalt glasses-bearing sediments, indicating that our deep-sea sampling site might be influenced to certain degree by the nearby hydrothermal field of the East Pacific Rise at 13°N. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

16.
丁新景 《生态学报》2018,38(16):5857-5864
为研究黄河三角洲不同人工林土壤细菌群落特征,应用高通量测序技术,比较分析了刺槐、榆树、白蜡、臭椿4种人工林土壤细菌结构及多样性,并结合土壤理化性质进行相关性分析。结果表明:人工林土壤中共有31门细菌;4种人工林土壤中酸杆菌门、变形菌门、放线菌门细菌以及刺槐、臭椿人工林土壤中硝化螺旋菌门细菌是土壤中的优势群落。不同人工林土壤中酸杆菌门、变形菌门、硝化螺旋菌门、芽单胞菌门、拟杆菌门、广古菌门、泉古菌门、蓝藻菌门细菌丰度差异显著。刺槐人工林土壤细菌多样性最高;白蜡人工林土壤细菌多样性最低。土壤pH、含水量、有机质含量与酸杆菌门细菌丰度呈显著负相关关系,土壤pH与变形菌门、硝化螺旋菌门、芽单胞菌门细菌丰度呈极显著正相关关系;土壤pH、有效磷含量与人工林细菌多样性呈显著正相关关系。以上研究结果表明,黄河三角洲不同人工林土壤细菌群落存在一定差异,土壤pH、含水量、有机质、有效磷含量是影响土壤细菌结构和多样性的主要土壤因素。  相似文献   

17.
The South China Sea is one of the largest marginal seas, with relatively frequent passage of eddies and featuring distinct spatial variation in the western tropical Pacific Ocean. Here, we report a phylogenetic study of bacterial community structures in surface seawater of the northern South China Sea (nSCS). Samples collected from 31 sites across large environmental gradients were used to construct clone libraries and yielded 2,443 sequences grouped into 170 OTUs. Phylogenetic analysis revealed 23 bacterial classes with major components α-, β- and γ-Proteobacteria, as well as Cyanobacteria. At class and genus taxon levels, community structure of coastal waters was distinctively different from that of deep-sea waters and displayed a higher diversity index. Redundancy analyses revealed that bacterial community structures displayed a significant correlation with the water depth of individual sampling sites. Members of α-Proteobacteria were the principal component contributing to the differences of the clone libraries. Furthermore, the bacterial communities exhibited heterogeneity within zones of upwelling and anticyclonic eddies. Our results suggested that surface bacterial communities in nSCS had two-level patterns of spatial distribution structured by ecological types (coastal VS. oceanic zones) and mesoscale physical processes, and also provided evidence for bacterial phylogenetic phyla shaped by ecological preferences.  相似文献   

18.
A total of 106 actinobacteria associated with the marine sponge Hymeniacidon perleve collected from the Yellow Sea, China were isolated using eight different media. The number of species and genera of actinobacteria recovered from the different media varied significantly, underlining the importance of optimizing the isolation conditions. The phylogenetic diversity of the actinobacteria isolates was assessed using 16S rRNA gene amplification–restriction fragment length polymorphism (RFLP) analysis of the 106 strains with different morphologies. The RFLP fingerprinting of selected strains by HhaI-digestion of the 16S rRNA genes resulted in 11 different patterns. The HhaI-RFLP analysis gave good resolution for the identification of the actinobacteria isolates at the genus level. A phylogenetic analysis using 16S rRNA gene sequences revealed that the isolates belonged to seven genera of culturable actinobacteria including Actinoalloteichus, Micromonospora, Nocardia, Nocardiopsis, Pseudonocardia, Rhodococcus, and Streptomyces. The dominant genus was Streptomyces, which represented 74% of the isolates. Three of the strains identified are candidates for new species.  相似文献   

19.
The diversity of bacteria and archaea was characterized from sediments collected from Wind Cave located in Wind Cave National Park in the Black Hills of South Dakota. Wind Cave is a limestone dissolution cave with strata that started forming over 300 million years ago, making it one of the oldest in the world. Previous work suggested that the cave was largely a detritus based system ultimately dependent upon allochthonous energy and carbon from photosynthesis of the overlying vegetation, and algae growing near lights along the tour routes. In this work, we used a molecular phylogenetic approach to characterize the microbial structure and infer a corresponding ecosystem function where appropriate. Four bacterial divisions and subdivisions were found in the culture collection, which represented 14 phylotypes, whereas 12 divisions and subdivisions were identified in the clonal analysis comprising 49 phylotypes. The predominant groups were the γ-Proteobacteria and Acidobacteria. Although a few of the clones resembled sequences from other cave and subterranean systems, no cave-specific bacterial community was evident in this work. Archaeal phylotypes (20 Crenarchaeota and 2 Euryarchaeota) were detected, with a large proportion of the Crenarchaeota resembling sequences from a South African gold mine. One archaeal cluster in particular appears to be specific to the subterranean environment. Most of the microbial sequences were not related to known chemolithoautotrophs, therefore we conclude that this particular community is likely detritus based where allochthonous energy and carbon are transported into the cave by infiltrating waters.  相似文献   

20.
The Baltic Sea is one of the largest brackish environments on Earth. Despite extensive knowledge about food web interactions and pelagic ecosystem functioning, information about the bacterial community composition in the Baltic Sea is scarce. We hypothesized that due to the eutrophic low-salinity environment and the long water residence time (>5 years), the bacterioplankton community from the Baltic proper shows a native “brackish” composition influenced by both freshwater and marine phylotypes. The bacterial community composition in surface water (3-m depth) was examined at a single station throughout a full year. Denaturing gradient gel electrophoresis (DGGE) showed that the community composition changed over the year. Further, it indicated that at the four extensive samplings (16S rRNA gene clone libraries and bacterial isolates from low- and high-nutrient agar plates and seawater cultures), different bacterial assemblages associated with different environmental conditions were present. Overall, the sequencing of 26 DGGE bands, 160 clones, 209 plate isolates, and 9 dilution culture isolates showed that the bacterial assemblage in surface waters of the central Baltic Sea was dominated by Bacteroidetes but exhibited a pronounced influence of typical freshwater phylogenetic groups within Actinobacteria, Verrucomicrobia, and Betaproteobacteria and a lack of typical marine taxa. This first comprehensive analysis of bacterial community composition in the central Baltic Sea points to the existence of an autochthonous estuarine community uniquely adapted to the environmental conditions prevailing in this brackish environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号