首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
2.
3.
4.
Ubiquitin-dependent degradation of Cdc25A is a major mechanism for damage-induced S-phase checkpoint. Two ubiquitin ligases, the Skp1-cullin-beta-TrCP (SCFbeta-TrCP) complex and the anaphase-promoting complex (APCCdh1), are involved in Cdc25A degradation. Here we demonstrate that the transforming growth factor beta (TGF-beta)-Smad3 pathway promotes SCF(beta-TrCP)-mediated Cdc25A ubiquitination. Cells treated with TGF-beta, as well as cells transfected with Smad3 or a constitutively active type I TGF-beta receptor, exhibit increased ubiquitination and markedly shortened half-lives of Cdc25A. Furthermore, Cdc25A is stabilized in cells transfected with Smad3 small interfering RNA (siRNA) and cells from Smad3-null mice. TGF-beta-induced ubiquitination is associated with Cdc25A phosphorylation at the beta-TrCP docking site (DS82G motif) and physical association of Cdc25A with Smad3 and beta-TrCP. Cdc25A mutant proteins deficient in DS82G phosphorylation are resistant to TGF-beta-Smad3-induced degradation, whereas a Cdc25A mutant protein defective in APCCdh1 recognition undergoes efficient degradation. Smad3 siRNA inhibits beta-TrCP-Cdc25A interaction and Cdc25A degradation in response to TGF-beta. beta-TrCP2 siRNA also inhibits Smad3-induced Cdc25A degradation. In contrast, Cdh1 siRNA had no effect on Cdc25A down-regulation by Smad3. These data suggest that Smad3 plays a key role in the regulation of Cdc25A ubiquitination by SCFbeta-TrCP and that Cdc25A stabilization observed in various cancers could be associated with defects in the TGF-beta-Smad3 pathway.  相似文献   

5.
Transforming growth factor beta (TGF-beta) is a potent growth inhibitor and inducer of cell death in B-lymphocytes and is essential for immune regulation and maintenance of self-tolerance. In this report the mouse immature B cell line, WEHI 231, was used to examine the mechanisms involved in TGF-beta-mediated apoptosis. Induction of apoptosis is detected as early as 8 h after TGF-beta administration. Coincident with the onset of apoptosis, the cytoskeletal actin-binding protein, alphaII-spectrin (alpha-fodrin) is cleaved into 150-, 115-, and 110-kDa fragments. The broad spectrum caspase inhibitor (Boc-D-fmk (BD-fmk)) completely abolished TGF-beta-induced apoptosis and alphaII-spectrin cleavage. Caspase 3, although present in WEH1 231 cells, was not activated by TGF-beta, nor was its substrate, poly(ADP-ribose) polymerase. These results identify alphaII-spectrin as a novel substrate that is cleaved during TGF-beta-induced apoptosis. Our data provide the first evidence of calpain and caspase 3-independent cleavage of alphaII-spectrin during apoptosis and suggests that TGF-beta induces apoptosis and alphaII-spectrin cleavage via a potentially novel caspase. This report also provides the first direct evidence of caspase 3 activation in WEH1 231 cells and indicates that at least two distinct apoptotic pathways exist.  相似文献   

6.
Selective estrogen receptor modulator is a proven agent for chemoprevention and chemotherapy of cancer. Raloxifene, a mixed estrogen agonist/antagonist, was developed to prevent osteoporosis and potentially reduce the risk of breast cancer. In this study, we examined the effect of raloxifene on the TSU-PR1 cell line. This cell line was originally reported to be a prostate cancer cell line, but recently it has been shown to be a human bladder transitional cell carcinoma cell line. The TSU-PR1 cell line contains high levels of estrogen receptor beta. Following treatment with raloxifene, evidence of apoptosis, including change in nuclear morphology, DNA fragmentation, and cytochrome c release, was observed in a dose-dependent manner in the TSU-PR1 cells (10(-9) to 10(-6) m range). We observed no detectable change in the steady-state levels of Bax, Bcl-2, and Bcl-X(L) following raloxifene treatment. However, raloxifene induced caspase-dependent cleavage of BAD to generate a 15-kDa truncated protein. Overexpression of a double mutant BAD resistant to caspase 3 cleavage blocked raloxifene-induced apoptosis. These results demonstrate that raloxifene induces apoptosis through the cleavage of BAD in TSU-PR1 cells. This molecular mechanism of apoptosis suggests that raloxifene may be a therapeutic agent for human bladder cancer.  相似文献   

7.
8.
Human papillomaviruses (HPVs) are implicated in the etiology of anogenital cancers. Expression of the HPV E6 and E7 oncoproteins is believed to contribute to the carcinogenic process. Progressive loss of the ability to differentiate and resistance to the growth-inhibitory effects of endogenous signals also appear important in multistep tumorigenesis. Transforming growth factor beta1 (TGF-beta1) is a potent growth inhibitor for a variety of cultured cells. There have been conflicting reports on the ability of TGF-beta1 to inhibit the growth of HPV-positive keratinocytes in monolayer cultures. We have employed the organotypic (raft) tissue culture system, which more accurately mimics the in vivo cellular environment and architecture. We have investigated the TGF-beta1 response of HPV-positive keratinocytes derived from neoplastic cervical biopsies. Growth of these cell lines as raft tissues showed that many were altered in the ability to stratify and synthesize differentiation-specific proteins. When the organotypic tissues were treated with TGF-beta1, a more complete differentiation of the keratinocytes was induced. Treatment with 12-0-tetradecanoylphorbol-13-acetate gave similar results. TGF-beta1 treatment of HPV-positive raft epithelia led to a dose-dependent increase in E7 RNA expression in contrast to results from previous studies with monolayer cultures. Furthermore, TGF-beta1 interfered with the proliferation of HPV-positive cell lines grown in monolayer cultures. Our results suggest that loss of the ability to express markers of differentiation, a characteristic of malignancy, is a two-step process. The first step is reversible; the second is irreversible.  相似文献   

9.
Cytoskeletal rearrangements are central to endothelial cell physiology and are controlled by soluble factors, matrix proteins, cell-cell interactions, and mechanical forces. We previously reported that aortic endothelial cells can rearrange their cytoskeletons into complex actin-based structures called podosomes when a constitutively active mutant of Cdc42 is expressed. We now report that transforming growth factor beta (TGF-beta) promotes podosome formation in primary aortic endothelial cells. TGF-beta-induced podosomes assembled together into large ring- or crescent-shaped structures. Their formation was dependent on protein synthesis and required functional Src, phosphatidylinositide 3-kinase, Cdc42, RhoA, and Smad signaling. MT1-MMP and metalloprotease 9 (MMP9), both upregulated by TGF-beta, were detected at sites of podosome formation, and MT1-MMP was found to be involved in the local degradation of extracellular matrix proteins beneath the podosomes and required for the invasion of collagen gels by endothelial cells. We propose that TGF-beta plays an important role in endothelial cell physiology by inducing the formation of podosomal structures endowed with metalloprotease activity that may contribute to arterial remodeling.  相似文献   

10.
Transforming growth factor beta 1 (TGF-beta 1) is known to inhibit hepatocyte growth in vitro and in vivo. In this study, we analyzed the effect of TGF-beta 1 on alpha-fetoprotein (AFP) and albumin gene expression in HuH-7 human hepatoma cells. TGF-beta 1 inhibited cell growth in a dose dependent manner. The cellular secretion rate of AFP but not albumin was suppressed significantly by TGF-beta 1. TGF-beta 1 caused a significant reduction in the level of AFP mRNA. In contrast, the levels of albumin mRNA or beta-actin mRNA were not changed by TGF-beta 1. In transient transfection experiments, TGF-beta 1 resulted in selective repression of AFP promoter activity. These results suggest that TGF-beta 1 is one of the key factors involved in the differential regulation of the AFP gene and the albumin gene.  相似文献   

11.
12.
13.
Like many other cell surface receptors, transforming growth factor beta (TGF-beta) receptors are internalized upon ligand stimulation. Given that the signaling-facilitating molecules Smad anchor for receptor activation (SARA) and Hrs are mainly localized in early endosomes, it was unclear whether receptor internalization is required for Smad2 activation. Using reversible biotin labeling, we directly monitored internalization of the TGF-beta type I receptor. Our data indicate that TGF-beta type I receptor is endocytosed via a clathrin-dependent mechanism and is effectively blocked by depletion of intracellular potassium or by expression of a mutant dynamin (K44A). However, blockage of receptor endocytosis by these two means has no effect on TGF-beta-mediated Smad2 activation. Furthermore, TGF-beta-induced Smad2 activation was unaffected by inhibition of hVPS34 activity with wortmannin or inhibitory anti-hVPS34 antibodies. Finally, we demonstrated that Smad2 interacted with cell surface receptors and that a SARA binding-deficient Smad2 mutant was phosphorylated by the receptors. Thus, our findings suggest that receptor endocytosis is dispersible for TGF-beta-mediated activation of Smad2 and that this activation can be mediated by both SARA-dependent and -independent mechanisms.  相似文献   

14.
Emodin-induced apoptosis through p53-dependent pathway in human hepatoma cells   总被引:13,自引:0,他引:13  
Shieh DE  Chen YY  Yen MH  Chiang LC  Lin CC 《Life sciences》2004,74(18):2279-2290
Most of the commonly used cytotoxic anticancer drugs have been shown to induce apoptosis in susceptible cells. However, the signaling pathway of their apoptotic effects remains undefined. In this study, the cytotoxic effect of emodin on various human hepatoma cell lines was investigated. Results demonstrated that emodin exhibited strongly suppressing effect on HepG2/C3A, PLC/PRF/5, and SK-HEP-1 cells, with the IC(50) value of 42.5, 46.6, and 53.1 microM, respectively. Furthermore, emodin induced apoptosis in HepG2/C3A cells was clearly verified by the appearance of DNA fragmentation and sub-G(1) accumulation. Besides, HepG2/C3A cells were found to be arrested in G(2)/M phase after the cells were treated with 60 microM emodin for 48 h. Moreover, significant increase in the levels of apoptosis-related signals such as p53 (419.3 pg/ml), p21 (437.4 units/ml), Fas (6.6 units/ml), and caspase-3 (35.4 pmol/min) were observed in emodin treated HepG2/C3A cells. Taken together, emodin displays effective inhibitory effects on the growth of various human hepatoma cell lines and stimulates the expression of p53 and p21 that resulted in the cell cycle arrest of HepG2/C3A cells at G(2)/M phase. Results also suggest that emodin-induced apoptosis in HepG2/C3A cells were mediated through the activation of p53, p21, Fas/APO-1, and caspase-3. It implies that emodin could be a useful chemotherapeutical agent for treatment of hepatocellular carcinoma (HCC).  相似文献   

15.
16.
The signaling pathway leading to TGF-beta1-induced apoptosis was investigated using a TGF-beta1-sensitive hepatoma cell line, FaO. Cell cycle analysis demonstrated that the accumulation of apoptotic cells was preceded by a progressive decrease of the cell population in the G(1) phase concomitant with a slight increase of the cell population in the G(2)/M phase in response to TGF-beta1. TGF-beta1 induced a transient increase in the expression of Cdc2, cyclin A, cyclin B, and cyclin D1 at an early phase of apoptosis. During TGF-beta1-induced apoptosis, the transient increase in cyclin-dependent kinase (Cdk) activities coincides with a dramatic increase in the hyperphosphorylated forms of RB. Treatment with roscovitine or olomoucine, inhibitors of Cdc2 and Cdk2, blocked TGF-beta1-induced apoptosis by inhibiting RB phosphorylation. Overexpression of Bcl-2 or adenovirus E1B 19K suppressed TGF-beta1-induced apoptosis by blocking the induction of Cdc2 mRNA and the subsequent activation of Cdc2 kinase, whereas activation of Cdk2 was not affected, suggesting that Cdc2 plays a more critical role in TGF-beta1-induced apoptosis. In conclusion, we present the evidence that Cdc2 and Cdk2 kinase activity transiently induced by TGF-beta1 phosphorylates RB as a physiological target in FaO cells and that RB hyperphosphorylation may trigger abrupt cell cycle progression, leading to irreversible cell death.  相似文献   

17.
Transforming growth factor-beta (TGF-beta) has been known as a potent immunosuppressive cytokine that can induce apoptosis in lymphoid cells. We established an IL-2-independent cell line, CTLL-2A, from murine T cell line CTLL-2. CTLL-2A expressed higher levels of CD95, CD69, and CD18 molecules than CTLL-2 did, suggesting a more activated state in CTLL-2A than in the CTLL-2 by phenotype. Exposing both CTLL-2 and CTLL-2A to TGF-beta results in differential apoptosis patterns defined by DNA fragmentation and plasma membrane alteration. Among the bcl-2 family members, bcl-2, bcl-w, and bcl-x(L) were also differently expressed in these two cell lines. In CTLL-2A, bcl-x(L) was amplified as a major anti-apoptotic molecule, and TGF-beta-induced cell death was more enhanced than in the original cell line. Caspase 1-like protease was activated by TGF-beta treatment and consequently it cleaved bcl-x(L) in CTLL-2A. TGF-beta-induced DNA fragmentation and cleavage of bcl-x(L) were inhibited by pretreatment with tetra peptide caspase 1 inhibitor, YVAD.cmk. These findings suggest that TGF-beta induces cell death in activated murine T cells through cleavage of bcl-x(L) via activated caspase 1-like protease, which may act as an important executor in that process.  相似文献   

18.
19.
Lee YW  Kühn H  Hennig B  Toborek M 《FEBS letters》2000,485(2-3):122-126
The present study was designed to investigate the hypothesis that interleukin-4 (IL-4) can induce apoptosis of human endothelial cells and to study regulatory pathways of this process. Indeed, DNA ladder assay and flow cytometry study showed that IL-4 can induce apoptosis of endothelial cells in a time- and dose-dependent manner. In addition, IL-4 markedly increased activity of caspase-3, and inhibition of this enzyme suppressed IL-4-induced apoptosis in a dose-dependent manner. These results provide the first evidence that IL-4 can induce apoptosis of human endothelial cells. In addition, the data indicate that the caspase-3-dependent pathway is critically involved in this process.  相似文献   

20.
We previously showed that NO induces apoptosis in thymocytes via a p53-dependent pathway. In the present study, we investigated the role of caspases in this process. The pan-caspase inhibitor, ZVAD-fmk, and the caspase-1 inhibitor, Ac-YVAD-cho, both inhibited NO-induced thymocyte apoptosis in a dose-dependent manner, whereas the caspase-3 inhibitor, Ac-DEVD-cho, had little effect even at concentrations up to 500 microM. ZVAD-fmk and Ac-YVAD-cho were able to inhibit apoptosis when added up to 12 h, but not 16 h, after treatment with the NO donor S-nitroso-N-acetyl penicillamine (SNAP). Caspase-1 activity was up-regulated at 4 h and 8 h and returned to baseline by 24 h; caspase-3 activity was not detected. Cytosolic fractions from SNAP-treated thymocytes cleaved the inhibitor of caspase-activated deoxyribonuclease. Such cleavage was completely blocked by Ac-YVAD-cho, but not by Ac-DEVD-cho or DEVD-fmk. Poly(ADP-ribose) polymerase (PARP) was also cleaved in thymocytes 8 h and 12 h after SNAP treatment; addition of Ac-YVAD-cho to the cultures blocked PARP cleavage. Furthermore, SNAP induced apoptosis in 44% of thymocytes from wild-type mice; thymocytes from caspase-1 knockout mice were more resistant to NO-induced apoptosis. These data suggest that NO induces apoptosis in thymocytes via a caspase-1-dependent but not caspase-3-dependent pathway. Caspase-1 alone can cleave inhibitor of caspase-activated deoxyribonuclease and lead to DNA fragmentation, thus providing a novel pathway for NO-induced thymocyte apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号