首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The bacterial recombinase RecA forms a nucleoprotein filament in vitro with single-stranded DNA (ssDNA) at its primary DNA binding site, site I. This filament has a second site, site II, which binds ssDNA and double-stranded DNA. We have investigated the binding of ssDNA to the RecA protein in the presence of adenosine 5'-O-(thiotriphosphate) cofactor using fluorescence anisotropy. The RecA protein carried out DNA strand exchange with a 5'-fluorescein-labeled 32-mer oligonucleotide. The anisotropy signal was shown to measure oligonucleotide binding to RecA, and the relationship between signal and binding density was determined. Binding of ssDNA to site I of RecA was stable at high NaCl concentrations. Binding to site II could be described by a simple two-state equilibrium, K = 4.5 +/- 1.5 x 10(5) m(-1) (37 degrees C, 150 mm NaCl, pH 7.4). The reaction was enthalpy-driven and entropy-opposed. It depended on salt concentration and was sensitive to the type of monovalent anion, suggesting that anion-dependent protein conformations contribute to ssDNA binding at site II.  相似文献   

2.
RecA protein features two distinct DNA-binding sites. During DNA strand exchange, the primary site binds to single-stranded DNA (ssDNA), forming the helical RecA nucleoprotein filament. The weaker secondary site binds double-stranded DNA (dsDNA) during the homology search process. Here we demonstrate that this site has a second important function. It binds the ssDNA strand that is displaced from homologous duplex DNA during DNA strand exchange, stabilizing the initial heteroduplex DNA product. Although the high affinity of the secondary site for ssDNA is essential for DNA strand exchange, it renders DNA strand exchange sensitive to an excess of ssDNA which competes with dsDNA for binding. We further demonstrate that single-stranded DNA-binding protein can sequester ssDNA, preventing its binding to the secondary site and thereby assisting at two levels: it averts the inhibition caused by an excess of ssDNA and prevents the reversal of DNA strand exchange by removing the displaced strand from the secondary site.  相似文献   

3.
The interaction of RecA protein with short single-stranded oligonucleotides is characterised by flow linear dichroism (LD), isoelectric focusing (IEF) and electron microscopy (EM). From LD and EM it is evident that RecA forms long filaments with at least some 50 oligonucleotides in a ‘train formation’. The tendency to form trains is substantially lower when an amino group is attached to the 5′ end of the oligonucleotide, suggesting that the modification impairs protein-protein interactions at the interface between two oligomers. From LD it is also evident that no bridging occurs between RecA–Oligonucleotide complexes containing more than one oligomer strand per RecA filament. This property make them manageable in polyacrylamide gels, hence allowing characterisation by IEF. RecA was found acidic with a pI of 5.0. The pI was not dependent on the presence of bound cofactor (ATPγS) and oligonucleotides suggesting that protonation of the protein readily occurs to compensate for the negative charges provided by bound cofactor and DNA.  相似文献   

4.
Abstract

We have characterised complexes between RecA and single-stranded homopolynucleotides by linear dichroism spectroscopy and small angle neutron scattering to investigate base pairing possibilities among DNA strands bound in a RecA filament. We find that in the presence of the non-hydrolysable cofactor ATPγS, and very likely also in the presence of ATP, a RecA fiber has three distinct DNA binding sites, each of which can bind one strand of DNA at a stoichiometry of three nucleotides per RecA monomer. The structural and hydrodynamic properties of the complexes are found to depend on the number of strands bound and on sequence complementarity among the strands. For example, RecA-[homopolymer]3-ATPγS complexes aggregate when either of the strands bound in sites I and II is complementary to the strand bound in site III. We have also studied the RecA catalysed annealing of complementary homopolymers and find it to be most efficient when two strands of one homopolymer are bound per RecA filament prior to the addition of the complementary homopolymer. These results suggest that a DNA strand bound in site III can base-pair with either of the strands in sites I and II, whereas the latter strands are unable to base-pair with each other.  相似文献   

5.
Gamper HB  Nulf CJ  Corey DR  Kmiec EB 《Biochemistry》2003,42(9):2643-2655
RecA protein catalyzes strand exchange between homologous single-stranded and double-stranded DNAs. In the presence of ATPgammaS, the post-strand exchange synaptic complex is a stable end product that can be studied. Here we ask whether such complexes can hybridize to or exchange with DNA, 2'-OMe RNA, PNA, or LNA oligonucleotides. Using a gel mobility shift assay, we show that the displaced strand of a 45 bp synaptic complex can hybridize to complementary oligonucleotides with different backbones to form a four-stranded (double D-loop) joint that survives removal of the RecA protein. This hybridization reaction, which confirms the single-stranded character of the displaced strand in a synaptic complex, might initiate recombination-dependent DNA replication if it occurs in vivo. We also show that either strand of the heteroduplex in a 30 bp synaptic complex can be replaced with a homologous DNA oligonucleotide in a strand exchange reaction that is mediated by the RecA filament. Consistent with the important role that deoxyribose plays in strand exchange, oligonucleotides with non-DNA backbones did not participate in this reaction. The hybridization and strand exchange reactions reported here demonstrate that short synaptic complexes are dynamic structures even in the presence of ATPgammaS.  相似文献   

6.
According to one prominent model, each protomer in the activated nucleoprotein filament of homologous recombinase RecA possesses two DNA-binding sites. The primary site binds (1) single-stranded DNA (ssDNA) to form presynaptic complex and (2) the newly formed double-stranded (ds) DNA whereas the secondary site binds (1) dsDNA of a partner to initiate strand exchange and (2) the displaced ssDNA following the strand exchange. RecA protein from Pseudomonas aeruginosa (RecAPa) promotes in Escherichia coli hyper-recombination in an SOS-independent manner. Earlier we revealed that RecAPa rapidly displaces E.coli SSB protein (SSB-Ec) from ssDNA to form presynaptic complex. Here we show that this property (1) is based on increased affinity of ssDNA for the RecAPa primary DNA binding site while the affinity for the secondary site remains similar to that for E.coli RecA, (2) is not specific for SSB-Ec but is also observed for SSB protein from P.aeruginosa that, in turn, predicts a possibility of enhanced recombination repair in this pathogenic bacterium.  相似文献   

7.
Reddy MS  Vaze MB  Madhusudan K  Muniyappa K 《Biochemistry》2000,39(46):14250-14262
Single-stranded DNA-binding proteins play an important role in homologous pairing and strand exchange promoted by the class of RecA-like proteins. It is presumed that SSB facilitates binding of RecA on to ssDNA by melting secondary structure, but direct physical evidence for the disruption of secondary structure by either SSB or RecA is still lacking. Using a series of oligonucleotides with increasing amounts of secondary structure, we show that stem loop structures impede contiguous binding of RecA and affect the rate of ATP hydrolysis. The electrophoretic mobility shift of a ternary complex of SSB-DNA-RecA and a binary complex of SSB-DNA are similar; however, the mechanism remains obscure. Binding of RecA on to stem loop is rapid in the presence of SSB or ATPgammaS and renders the complex resistant to cleavage by HaeIII, to higher amounts of competitor DNA or low temperature. The elongation of RecA filament in a 5' to 3' direction is halted at the proximal end of the stem. Consequently, RecA nucleates at the loop and cooperative binding propagates the RecA filament down the stem causing its disruption. The pattern of modification of thymine residues in the loop region indicates that RecA monomer is the minimum binding unit. Together, these results suggest that SSB plays a novel role in ensuring the directionality of RecA polymerization across stem loop in ssDNA. These observations have fundamental implications on the role of SSB in multiple aspects of cellular DNA metabolism.  相似文献   

8.
The RecA protein is an ATPase that mediates recombination via strand exchange. In strand exchange a single-stranded DNA (ssDNA) bound to RecA binding site I in a RecA/ssDNA filament pairs with one strand of a double-stranded DNA (dsDNA) and forms heteroduplex dsDNA in site I if homology is encountered. Long sequences are exchanged in a dynamic process in which initially unbound dsDNA binds to the leading end of a RecA/ssDNA filament, while heteroduplex dsDNA unbinds from the lagging end via ATP hydrolysis. ATP hydrolysis is required to convert the active RecA conformation, which cannot unbind, to the inactive conformation, which can unbind. If dsDNA extension due to RecA binding increases the dsDNA tension, then RecA unbinding must decrease tension. We show that in the presence of ATP hydrolysis decreases in tension induce decreases in length whereas in the absence of hydrolysis, changes in tension have no systematic effect. These results suggest that decreases in force enhance dissociation by promoting transitions from the active to the inactive RecA conformation. In contrast, increases in tension reduce dissociation. Thus, the changes in tension inherent to strand exchange may couple with ATP hydrolysis to increase the directionality and stringency of strand exchange.  相似文献   

9.
Self-complementary chimeric oligonucleotides that consist of DNA and 2'-O-methyl RNA nucleotides arranged in a double-hairpin configuration can elicit a point mutation when targeted to a gene sequence. We have used a series of structurally diverse chimeric oligonucleotides to correct a mutant neomycin phosphotransferase gene in a human cell-free extract. Analysis of structure-activity relationships demonstrates that the DNA strand of the chimeric oligonucleotide acts as a template for high-fidelity gene correction when one of its bases is mismatched to the targeted gene. By contrast, the chimeric strand of the oligonucleotide does not function as a template for gene repair. Instead, it appears to augment the frequency of gene correction by facilitating complex formation with the target. In the presence of RecA protein, each strand of a chimeric oligonucleotide can hybridize with double-stranded DNA to form a complement-stabilized D-loop. This reaction, which may take place by reciprocal four-strand exchange, is not observed with oligonucleotides that lack 2'-O-methyl RNA segments. Preliminary sequencing data suggest that complement-stabilized D-loops may be weakly mutagenic. If so, a low level of random mutagenesis in the vicinity of the chimera binding site may accompany gene repair.  相似文献   

10.
RecA first forms a filament on single-stranded DNA (ssDNA), thereby forming the first site for ssDNA binding and, simultaneously, the second site for binding double-stranded DNA (dsDNA). Then, the nucleoprotein filament interacts with dsDNA, although it can bind ssDNA as well. The resulting complex searches for homology sites and performs strand exchange between homologous DNA molecules. The interaction of various ssDNAs with the second DNA-recognizing site of RecA was studied by gradually increasing the structural complexity of the DNA ligand. Recognizing ssDNA with the second site, the protein interacts with each nucleotide of the ligand, forming contacts with both internucleotide phosphate groups and nitrogen bases. Pyrimidine oligonucleotides d(pC) n and d(pT) n interacted with the second site of the RecA filament more efficiently than d(pA) n did. This was due to a more efficient interaction of the RecA filament with the 5′-terminal nucleotide of pyrimidinic DNA and to the difference in specific conformational changes of the nucleoprotein filament in the presence of purinic and pyrimidinic DNAs. A comparison of thermodynamic characteristics of DNA recognition at the first and second DNA-binding sites of the filament showed that, at n > 10, d(pC) n and d(pN) n were bound at the second site less tightly than at the first site. At n > 20, the second site bound d(pA) n more efficiently than the first site. The difference in d(pN) n affinity for the first and second sites increased monotonically with increasing n. Possible mechanisms of a RecA-dependent search for homology and DNA strand exchange are discussed.  相似文献   

11.
The helical filament formed by RecA protein on single-stranded DNA plays an important role in homologous recombination and pairs with a complementary single strand or homologous duplex DNA. The RecA nucleoprotein filament also recognizes an identical single strand. The chimeric protein, RecAc38, forms a nucleoprotein filament that recognizes a complementary strand but is defective in recognition of duplex DNA, and is associated with phenotypic defects in repair and recombination. As described here, RecAc38 nucleoprotein filament is also defective in recognition of an identical strand, either when the filament has within it a single strand or duplex DNA. A model that postulates three DNA binding sites rationalizes these observations and suggests that the third binding site mediates non-Watson-Crick interactions that are instrumental in recognition of homology in duplex DNA.  相似文献   

12.
RecA protein first forms filament on single-stranded (ss) DNA forming the first DNA-binding site for interaction with this ssDNA a formation of the second site for interaction with double-stranded DNA occurs in parallel. Then the formed nucleoprotein filament interacts with molecules of double-stranded (ds) DNA but can also recognize ssDNA. The formed complex realizes a search of homology and exchange of homologous strands. We have studied recently the mechanism of RecA filamentation on ssDNA. Here a study of interaction of different DNAs with the second site of RecA filament using a method of stepwise increase of the ligand complicity was performed. The second site under recognition interacts with every nucleotide units of DNA-ligand forming contact with both internucleotide phosphate groups and bases of DNA. Pyrimidinic d(pC)n [Russian character: see text d(pT)n oligonucleotides interact with the second site of the RecA filament more effectively than with d(pA)n oligonucleotides. This occurs due to a more effective interaction of the RecA filament with 5'-terminal unit of pyrimidinic DNAs and to a difference in specific conformational changes of nucleoprotein filaments in the complex with purinic and pyrimidinic DNAs. A comparison of thermodynamic characteristics of DNA recognition by the first and the second sites of DNA recognition is carried out. It was shown that at n >10 d(pC)n d(pN)n interact with the second site weaker, that with the first site. The complexation of the second site with d(pA)n at n >20 is more effective than with the first site. The difference in the affinity of d(pA)n to the fist and second sites is increased monotonically with the enhancement of their length. Possible mechanisms of RecA-dependent search of homology and strand exchange are discussed.  相似文献   

13.
The bacteriophage P1 recombination enhancement function (Ref) protein is a RecA-dependent programmable endonuclease. Ref targets displacement loops formed when an oligonucleotide is bound by a RecA filament and invades homologous double-stranded DNA sequences. Mechanistic details of this reaction have been explored, revealing that (i) Ref is nickase, cleaving the two target strands of a displacement loop sequentially, (ii) the two strands are cleaved in a prescribed order, with the paired strand cut first and (iii) the two cleavage events have different requirements. Cutting the paired strand is rapid, does not require RecA-mediated ATP hydrolysis and is promoted even by Ref active site variant H153A. The displaced strand is cleaved much more slowly, requires RecA-mediated ATP hydrolysis and does not occur with Ref H153A. The two cleavage events are also affected differently by solution conditions. We postulate that the second cleavage (displaced strand) is limited by some activity of RecA protein.  相似文献   

14.
The RecA protein requires ATP or dATP for its coprotease and strand exchange activities. Other natural nucleotides, such as ADP, CTP, GTP, UTP and TTP, have little or no activation effect on RecA for these activities. We have investigated the activation mechanism, and the selectivity for ATP, by studying the effect of various nucleotides on the DNA binding and the helical structure of the RecA filament. The interaction with DNA was investigated via fluorescence measurements with a fluorescent DNA analog and fluorescein-labeled oligonucleotides, assisted by linear dichroism. Filament structure was investigated via small-angle neutron scattering. There is no simple correlation between filament elongation, DNA binding affinity of RecA, and DNA structure in the RecA complex. There may be multiple conformations of RecA. Both coprotease and strand exchange activities require formation of a rigid and well organized complex. The triphosphate nucleotides which do not activate RecA, destabilize the RecA-DNA complex, indicating that the chemical nature of the nucleotide nucleobase is very important for the stability of RecA-DNA complex. Higher stability of the RecA-DNA complex in the presence of adenosine 5'-O-3-thiotriphosphate or guanosine 5'-O-3-thiotriphosphate than ATP or GTP indicates that contact between the protein and the chemical group at the gamma position of the nucleotide also affects the stability of the RecA-DNA complex. This contact appears also important for the rigid organization of DNA because ADP strongly decreases the rigidity of the complex.  相似文献   

15.
We have analyzed the nature of RecA protein-RecA protein interactions using an affinity column prepared by coupling RecA protein to an agarose support. When radiolabeled soluble proteins from Escherichia coli are applied to this column, only the labeled RecA protein from the extract was selectively retained and bound tightly to the affinity column. Efficient binding of purified 35S-labeled RecA protein required Mg2+, and high salt did not interfere with the binding of RecA protein to the column. Complete removal of the bound enzyme from the affinity column required treatment with guanidine HCl (5 M) or urea (8 M). These and other properties suggest that hydrophobic interactions contribute significantly to RecA protein subunit recognition in solution. Using a series of truncated RecA proteins synthesized in vitro, we have obtained evidence that at least some of the sequences involved in protein recognition are localized within the first 90 amino-terminal residues of the protein. Based on the observation that RecA proteins from three heterologous bacteria are specifically retained on the E. coli RecA affinity column, it is likely that this binding domain is highly conserved and is required for interaction and association of RecA protein monomers. Stable ternary complexes of RecA protein and single-stranded DNA were formed in the presence of the nonhydrolyzable ATP analog adenosine 5'-O-(thiotriphosphate) and applied to the affinity columns. Most of the complexes formed with M13 DNA could be eluted in high salt, whereas a substantial fraction of those formed with the oligonucleotide (dT)25-30 remained bound in high salt and were quantitatively eluted with guanidine HCl (5 M). The different binding properties of these RecA protein-DNA complexes likely reflect differences in the availability of a hydrophobic surface on RecA protein when it is bound to long polynucleotides compared to short oligonucleotides.  相似文献   

16.
RecA proteins form a long stable filament on a single-stranded DNA and catalyze strand exchange reaction. The stability of RecA filament changes dramatically with pH, yet its detailed mechanism is not known. Here, using a single molecule assay, we determined the binding and dissociation rates of RecA monomers at the filament ends at various pH. The pH-induced rate changes were moderate but occurred in opposite directions for binding and dissociation, resulting in a substantial increase in filament stability in lower pH. The highly charged residues in C-terminal domain do not contribute to the pH dependent stability. The stability enhancement of RecA filament in low pH may help the cell to cope with acidic stress by fine-tuning of the binding and dissociation rates without losing the highly dynamic nature of the filament required for strand exchange.  相似文献   

17.
RecA-family proteins mediate homologous recombination and recombinational DNA repair through homology search and strand exchange. Initially, the protein forms a filament with the incoming single-stranded DNA (ssDNA) bound in site I. The RecA–ssDNA filament then binds double-stranded DNA (dsDNA) in site II. Non-homologous dsDNA rapidly unbinds, whereas homologous dsDNA undergoes strand exchange yielding heteroduplex dsDNA in site I and the leftover outgoing strand in site II. We show that applying force to the ends of the complementary strand significantly retards strand exchange, whereas applying the same force to the outgoing strand does not. We also show that crystallographically determined binding site locations require an intermediate structure in addition to the initial and final structures. Furthermore, we demonstrate that the characteristic dsDNA extension rates due to strand exchange and free RecA binding are the same, suggesting that relocation of the complementary strand from its position in the intermediate structure to its position in the final structure limits both rates. Finally, we propose that homology recognition is governed by transitions to and from the intermediate structure, where the transitions depend on differential extension in the dsDNA. This differential extension drives strand exchange forward for homologs and increases the free energy penalty for strand exchange of non-homologs.  相似文献   

18.
Bacterial RecA is a prototype of ATP-dependent homologous recombinases, found ubiquitously from bacteriophages to humans. The RecA filament formed on single-stranded DNA in the presence of ATP initiates a strand exchange reaction with homologous double-stranded DNA. Of the three stages of this reaction (search for homology, annealing of a triple-stranded structure accompanied by a switch of pairing, and displacement of the third strand), the first stage is the most enigmatic and least studied. As is generally accepted, this stage is directed by a special (extended) RecA filament structure and does not require any additional energy from ATP hydrolysis. The new approaches to the study of the strand exchange reaction with short oligonucleotides as DNA substrates and sensitive methods for a real-time monitoring of this reaction suggest that all three stages depend on ATP hydrolysis.  相似文献   

19.
The RecA protein of Deinococcus radiodurans (RecA(Dr)) is essential for the extreme radiation resistance of this organism. The RecA(Dr) protein has been cloned and expressed in Escherichia coli and purified from this host. In some respects, the RecA(Dr) protein and the E. coli RecA (RecA(Ec)) proteins are close functional homologues. RecA(Dr) forms filaments on single-stranded DNA (ssDNA) that are similar to those formed by the RecA(Ec). The RecA(Dr) protein hydrolyzes ATP and dATP and promotes DNA strand exchange reactions. DNA strand exchange is greatly facilitated by the E. coli SSB protein. As is the case with the E. coli RecA protein, the use of dATP as a cofactor permits more facile displacement of bound SSB protein from ssDNA. However, there are important differences as well. The RecA(Dr) protein promotes ATP- and dATP-dependent reactions with distinctly different pH profiles. Although dATP is hydrolyzed at approximately the same rate at pHs 7.5 and 8.1, dATP supports an efficient DNA strand exchange only at pH 8.1. At both pHs, ATP supports efficient DNA strand exchange through heterologous insertions but dATP does not. Thus, dATP enhances the binding of RecA(Dr) protein to ssDNA and the displacement of ssDNA binding protein, but the hydrolysis of dATP is poorly coupled to DNA strand exchange. The RecA(Dr) protein thus may offer new insights into the role of ATP hydrolysis in the DNA strand exchange reactions promoted by the bacterial RecA proteins. In addition, the RecA(Dr) protein binds much better to duplex DNA than the RecA(Ec) protein, binding preferentially to double-stranded DNA (dsDNA) even when ssDNA is present in the solutions. This may be of significance in the pathways for dsDNA break repair in Deinococcus.  相似文献   

20.
We have developed a new assay to characterize the double-stranded DNA (dsDNA) binding properties of RecA protein. This assay is based on measurement of changes in the fluorescence of a 4',6-diamidino-2-phenylindole (DAPI)-dsDNA complex upon RecA protein binding. The binding of RecA protein to a complex of DAPI and dsDNA results in displacement of the bound DAPI, producing a decrease in the observed fluorescence. DAPI displacement is dependent on both RecA protein and ATP; dATP and, to a lesser extent, UTP and dCTP also support the DAPI displacement reaction, but dGTP, GTP, dITP and TTP do not. Binding stoichiometry for the RecA protein-dsDNA complex measured by DAPI displacement is 3 bp per RecA protein monomer in the presence of ATP. These results, taken together with data for mutant RecA proteins, suggest that this DAPI displacement assay monitors formation of the high affinity DNA binding state of RecA protein. Since this state of RecA protein defines the form of the nucleoprotein filament that is active in DNA strand exchange, these findings raise the possibility that the RecA protein-dsDNA filament may possess a homologous pairing capacity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号