首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
pMB9 plasmids bearing the Salmonella typhimurium his operon and gnd gene   总被引:5,自引:0,他引:5  
A plasmid containing the entire Salmonella typhimurium his operon was constructed from plasmid pM89 and an EcoRI fragment of phi 80 his imm lambda DNA. The recombinant pST41 also includes the glucose 6-phosphate dehydrogenase (gnd) gene and has one EcoRI endonuclease cleavage site in the integrated fragment. This plasmid served as a source for the construction of two additional plasmids, one carrying the OGDC-region of the his operon and the other a CBHAFIE segment of the his gene along with the gnd gene. The presence of the his operon in the constructed plasmids was confirmed by hybridization to S. typhimurium his RNA. The location of the gnd gene in the CBHAFIE fragment of the his gene was confirmed genetically: after transfection with the plasmid bearing the gnd gene, a gnd recipient gained the capacity to utilize gluconate as a sole carbon source. The DNAs of the three hybrid plasmids were analyzed by gel electrophoresis. By comparing the EcoRI endonuclease cleavage pattern of these three hybrid plasmids with the DNA cleavage pattern of phi 80 his imm lambda, phi 80 imm lambda and lambda phages, the EcoRI cleavage map of phi 80 his imm lambda was obtained.  相似文献   

2.
F'-episomes carrying the Salmonella typhimurium wild-type or attenuator-deleted histidine (his) operons were introduced into Escherichia coli strains containing relA or spoT single and double mutations known to affect guanosine 3'-diphosphate 5'-diphosphate (ppGpp) and guanosine 3'-triphosphate 5'-diphosphate (pppGpp) levels. Expression of the his operon and expression of the gene for 6-phosphogluconate dehydrogenase (gnd) were measured during balanced growth in amino acid-rich and minimal media. The data were consistent with the interpretation that ppGpp is a positive effector of his operon expression, whereas pppGpp is not an essential effector. The conclusion that his operon expression is maximally stimulated at a lower than maximum intracellular ppGpp concentration was further confirmed. Neither ppGpp nor pppGpp appeared to influence gnd gene expression. The metabolic regulation of the E. coli his operon was found to be similar to the ppGpp-meidated metabolic regulation of the S. typhimurium his operon.  相似文献   

3.
A comparative study of gnd genes from Escherichia coli strains isolated from natural populations and laboratory strains and from Salmonella typhimurium was undertaken. In the accompanying paper (G. J. Barcak and R. E. Wolf, Jr., J. Bacteriol. 170:365-371, 1988), we showed that the growth-rate-dependent regulation of gnd expression was conserved among four natural E. coli isolates and E. coli B/r in a manner qualitatively similar to that of the gene from E. coli K-12. Here, we report the DNA sequence of the 5' regulatory region and the first 125 codons of the structural gene for the five E. coli gnd genes and the gnd gene from S. typhimurium LT-2. The sequences differed from one another by 5% on the average. All sequences defined putative secondary structures of the mRNA leader, which were previously proposed to be important in the regulation of the K-12 gene. In addition, a sequence between codons 69 and 74, which is highly complementary to the ribosome-binding site of the mRNA, was conserved in all the genes. The sequence data are discussed with respect to potential regulatory consequences.  相似文献   

4.
An F' factor, FS400, carrying the his operon, the gnd gene, and the rfb gene cluster of Salmonella typhimurium was isolated. FS400 was introduced into an Escherichia coli strain having a lengthy deletion of the his gene region. From this strain, Hfr derivatives were isolated which had the F' factor integrated in the tonB locus near the attachment site of phi80. One of the Hfr strains was lysogenized with a heat-inducible, h mutant of phi80, and from this strain a high-frequency transducing phage carrying the his genes and the gnd gene of Salmonella was isolated.  相似文献   

5.
6-Phosphogluconate dehydrogenase (6PGD), encoded by gnd, is highly polymorphic among isolates of Escherichia coli form natural populations. As a means of characterizing the growth-rate-dependent regulation of the level of 6PGD, five gnd alleles, including the E. coli B/r allele, were crossed into E. coli K-12 with bacteriophage P1. In each of the isogenic strains, the level of 6PGD was two- to threefold higher in cells grown on glucose than in cells grown on acetate. The level of enzyme activity in the acetate-grown cells varied about sixfold within the set of isogenic strains. The physiological importance of these differences in enzyme level is discussed. The gnd gene was cloned from five E. coli strains and Salmonella typhimurium LT-2 and mapped with twelve restriction endonucleases. gnd was located and oriented on the chromosomal DNAs. The restriction maps of the genes were aligned at conserved restriction sites, and the relative divergence of the genes was estimated from restriction site polymorphisms. The E. coli gnd genes differed from the S. typhimurium gene by about 11%. Most of the E. coli genes differed from one another by less than 5%, but one allele differed from the others by about 10%. Only the gnd gene from E. coli K-12 had an IS5 element located nearby.  相似文献   

6.
The loci on the Escherichia coli genome of mutations affecting the constitutive enzymes glucose-6-phosphate dehydrogenase (zwf) and gluconate-6-phosphate dehydrogenase (gnd), and the inducible enzyme gluconate-6-phosphate dehydrase (edd), were determined by conjugation and transduction experiments, chiefly by three-factor crosses. They are in the same region of the chromosome, and their order is gnd-his-(edd, zwf)-aroD; gnd and his are cotransduceable, as are zwf and edd. The position of gnd in Salmonella typhimurium was shown to be similar to that in E. coli.  相似文献   

7.
Nine natural isolates of Escherichia coli were examined, and the sequence of the entire 1,404 bases of the gnd gene (6-phosphogluconate dehydrogenase, EC 1.1.1.44) was determined. These isolates, along with E. coli K-12, constitute 10 strains for analysis. (The sequence of the E. coli K-12 gnd gene is known.) A total of 184 sites were polymorphic, and up to 6% sequence divergence was observed between pairs of strains. The deduced amino acid sequences showed much more variation than had been shown by multilocus enzyme electrophoresis, and in addition the net charge calculated did not correlate strongly with electrophoretic mobility. A phylogenetic tree for the sequences that was based on maximum parsimony differed significantly from a tree for the same strains that was based on multilocus enzyme electrophoresis for 35 enzymes (R. K. Selander, D. A. Caugant, and T. S. Whittam, p. 1625-1648, in F. C. Neidhardt, J. L. Ingraham, K. B. Low, B. Magasanik, M. Schaechter, and H. E. Umbarger, ed., Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, 1987). These data, together with analysis of sequence variation between the strains, indicated that intragenic recombination and transfer of the whole of gnd have occurred in the evolution of these strains. There is evidence of one recombination event between E. coli and Salmonella typhimurium.  相似文献   

8.
W R Jones  G J Barcak    R E Wolf  Jr 《Journal of bacteriology》1990,172(3):1197-1205
In Escherichia coli, the level of 6-phosphogluconate dehydrogenase is directly proportional to the cellular growth rate during growth in minimal media. This contrasts with the report by Winkler et al. (M. E. Winkler, J. R. Roth, and P. E. Hartman, J. Bacteriol. 133:830-843, 1978) that the level of the enzyme in Salmonella typhimurium LT-2 strain SB3436 is invariant. The basis for the difference in the growth-rate-dependent regulation between the two genera was investigated. Expression of gnd, which encodes 6-phosphogluconate dehydrogenase, was growth rate uninducible in strain SB3436, as reported previously, but it was 1.4-fold growth rate inducible in other S. typhimurium LT-2 strains, e.g., SA535. Both the SB3436 and SA535 gnd genes were growth rate inducible in E. coli K-12. Moreover, the nucleotide sequences of the regulatory regions of the two S. typhimurium genes were identical. We concluded that a mutation unlinked to gnd is responsible for the altered growth rate inducibility of 6-phosphogluconate dehydrogenase in strain SB3436. Transductional analysis showed that the altered regulation is due to the presence of a mutation in hisT, the gene for the tRNA modification enzyme pseudouridine synthetase I. A complementation test showed that the regulatory defect conferred by the hisT mutation was recessive. In E. coli, hisT mutations reduced the extent of growth rate induction by the same factor as in S. typhimurium. The altered regulation conferred by hisT mutations was not simply due to their general effect of reducing the polypeptide chain elongation rate, because miaA mutants, which lack another tRNA modification and have a similarity reduced chain growth rate, had higher rather than lower 6-phosphogluconate dehydrogenase levels. Studies with genetic fusions suggested that hisT mutations lower the gnd mRNA level. The data also indicated that hisT is involved in translational control of gnd expression, but not the aspect mediated by the internal complementary sequence.  相似文献   

9.
A recombinant plasmid (pAS19) isolated from a derivative of Salmonella typhimurium LT2, containing the strain LT2 cryptic plasmid and an F'his gnd element, has been physically characterized. The pAS19 plasmid contour length equals the sum of the contour lengths of the cryptic plasmid and F'his gnd element. Deoxyribonucleic acid (DNA)-DNA hybridization experiments demonstrated that whereas the pAS19 plasmid exhibits extensive DNA homology with both the cryptic plasmid and the F'his gnd element, there is little DNA homology between these latter two plasmids. The DNA fragmentation pattern of the pAS19 plasmid produced by the restriction endonuclease R-EcoRI is consistent with that expected for a composite plasmid cointegrate containing most, if not all, of the DNA sequences present in its two component plasmids.  相似文献   

10.
Intracellular parasites, such as Leishmania spp, must acquire suitable carbon sources from the host cell in order to replicate. Here we present evidence that intracellular amastigote stages of Leishmania exploit amino sugars in the phagolysosome of mammalian macrophages as a source of carbon and energy. L. major parasites are capable of using N-acetylglucosamine and glucosamine as primarily carbon sources and contain key enzymes required for conversion of these sugars to fructose-6-phosphate. The last step in this pathway is catalyzed by glucosamine-6-phosphate deaminase (GND), which was targeted to glycosomes via a canonical C-terminal targeting signal when expressed as a GFP fusion protein. Mutant parasites lacking GND were unable to grow in medium containing amino sugars as sole carbohydrate source and rapidly lost viability, concomitant with the hyper-accumulation of hexosamine-phosphates. Expression of native GND, but not a cytosolic form of GND, in Δgnd parasites restored hexosamine-dependent growth, indicating that toxicity is due to depletion of glycosomal pools of ATP. Non-lethal increases in hexosamine phosphate levels in both Δgnd and wild type parasites was associated with a defect in promastigote metacyclogenesis, suggesting that hexosamine phosphate levels may influence parasite differentiation. Promastigote and amastigote stages of the Δgnd mutant were unable to replicate within macrophages and were either completely cleared or exhibited reduced lesion development in highly susceptible Balb/c mice. Our results suggest that hexosamines are a major class of sugars in the macrophage phagolysosome and that catabolism of scavenged amino sugars is required to sustain essential metabolic pathways and prevent hexosamine toxicity.  相似文献   

11.
purF mutants of Salmonella typhimurium are known to require a source of both purine and thiamine; however, exogenous pantothenate may be substituted for the thiamine requirement. We show here that the effect of pantothenate is prevented by blocks in the oxidative pentose phosphate pathway, gnd (encoding gluconate 6-phosphate [6-P] dehydrogenase) or zwf (encoding glucose 6-P dehydrogenase). We further show that the defects caused by these mutations can be overcome by increasing ribose 5-P, suggesting that ribose 5-P may play a role in the ability of pantothenate to substitute for thiamine.  相似文献   

12.
The DNA sequence of part of the gnd (6-phosphogluconate dehydrogenase) gene was determined for eight wild strains of Escherichia coli and for Salmonella typhimurium. Since a region of the trp (tryptophan) operon and the phoA (alkaline phosphatase) gene have been sequenced from the same strains, the gene trees for these three regions were determined and compared. Gene trees are different from species or strain trees in that a gene tree is derived from a particular segment of DNA, whereas a species or strain tree should be derived from many such segments and is the tree that best represents the phylogenetic relationship of the species or strains. If there were no recombination in E. coli, the gene trees for different genes would not be statistically different from the strain tree or from each other. But, if the gene trees are significantly different, there must have been recombination. Methods are proposed that show these gene trees to be statistically different. Since the gene trees are different, we conclude that recombination is important in natural populations of E. coli. Finally, we suggest that gene trees can be used to create an operational means of defining bacterial species by using the biological species definition.  相似文献   

13.
The rfb region specifies the structure of lipopolysaccharide side chains that comprise the diverse gram-negative bacterial somatic (O) antigens. The rfb locus is adjacent to gnd, which is a polymorphic gene encoding 6-phosphogluconate dehydrogenase. To determine if rfb and gnd cotransfer, we sequenced gnd in five O55 and 13 O157 strains of Escherichia coli. E. coli O157:H7 has a gnd allele (allele A) that is only 82% identical to the gnd allele (allele D) of closely related E. coli O55:H7. In contrast, gnd alleles of E. coli O55 in distant lineages are >99.9% identical to gnd allele D. Though gnd alleles B and C in E. coli O157 that are distantly related to E. coli O157:H7 are more similar to allele A than to allele D, there are nucleotide differences at 4 to 6% of their sites. Alleles B and C can be found in E. coli O157 in different lineages, but we have found allele A only in E. coli O157 belonging to the DEC5 lineage. DNA 3' to the O55 gnd allele in diverse E. coli lineages has sequences homologous to tnpA of the Salmonella enterica serovar Typhimurium IS200 element, E. coli Rhs elements (including an H-rpt gene), and portions of the O111 and O157 rfb regions. We conclude that rfb and gnd cotransferred into E. coli O55 and O157 in widely separated lineages and that recombination was responsible for recent antigenic shifts in the emergence of pathogenic E. coli O55 and O157.  相似文献   

14.
We have sequenced the O-antigen gene clusters for the Escherichia coli O98 and Yersinia kristensenii O11 O antigens. The basic structures of these O antigens are identical, and the sequence data indicate that Y. kristensenii O11 gained its O-antigen gene cluster by lateral gene transfer (LGT). Escherichia coli O98 has a typical O-antigen gene cluster between galF and gnd as is usual in E. coli. However, the O-antigen gene cluster of Y. kristensenii O11 is not located at the traditional Yersinia O-antigen gene cluster locus, between hemH and gsk, but at a novel chromosomal locus between aroA and cmk where it is flanked by remnant galF and gnd genes that indicate the probable source of the gene cluster. Phylogenetic analysis indicated that the source was not E. coli itself but a species in the Escherichia, Salmonella, and Klebsiella group of genera. Although other O-antigen studies imply LGT on the basis of the hypervariability of the loci and GC content, this report also identifies a potential donor and provides evidence for the mechanism involved. Remnant insertion sequence (IS) sequences flank the galF and gnd remnants and suggest that LGT of the gene cluster was IS mediated.  相似文献   

15.
Selection Intensity for Codon Bias   总被引:26,自引:7,他引:19       下载免费PDF全文
D. L. Hartl  E. N. Moriyama    S. A. Sawyer 《Genetics》1994,138(1):227-234
The patterns of nonrandom usage of synonymous codons (codon bias) in enteric bacteria were analyzed. Poisson random field (PRF) theory was used to derive the expected distribution of frequencies of nucleotides differing from the ancestral state at aligned sites in a set of DNA sequences. This distribution was applied to synonymous nucleotide polymorphisms and amino acid polymorphisms in the gnd and putP genes of Escherichia coli. For the gnd gene, the average intensity of selection against disfavored synonymous codons was estimated as approximately 7.3 X 10(-9); this value is significantly smaller than the estimated selection intensity against selectively disfavored amino acids in observed polymorphisms (2.0 X 10(-8)), but it is approximately of the same order of magnitude. The selection coefficients for optimal synonymous codons estimated from PRF theory were consistent with independent estimates based on codon usage for threonine and glycine. Across 118 genes in E. coli and Salmonella typhimurium, the distribution of estimated selection coefficients, expressed as multiples of the effective population size, has a mean and standard deviation of 0.5 +/- 0.4. No significant differences were found in the degree of codon bias between conserved positions and replacement positions, suggesting that translational misincorporation is not an important selective constraint among synonymous polymorphic codons in enteric bacteria. However, across the first 100 codons of the genes, conserved amino acids with identical codons have significantly greater codon bias than of either synonymous or nonidentical codons, suggesting that there are unique selective constraints, perhaps including mRNA secondary structures, in this part of the coding region.  相似文献   

16.
17.
Abstract FlgM inhibits the flagella-specific sigma factor FliA and is involved in the mouse-virulence of Salmonella typhimurium . In recent experiments, we observed that: (i) a flgM gene that could function to negatively regulate flagella synthesis was present in a variety of salmonellae; and (ii) the flgM gene derived from Salmonella species that are not normally virulent in mice could complement the S. typhimurium flgM mutant for virulence. Our results suggest that a functional flgM , has been retained in most, and perhaps all, Salmonella species, regardless of the motility or virulence phenotype of the strain.  相似文献   

18.
Multiple HindIII-restriction fragments of Salmonella typhimurium and Salmonella typhi chromosomal DNA exhibited homology with the heat-labile enterotoxin (LT1) gene of Escherichia coli as determined by Southern blot analysis. A 9.4 kb HindIII restriction fragment identified in S. typhimurium and S. typhi chromosomal DNA reacted with both eltA and eltB gene probes. However, the homology of the 9.4 kb DNA fragment from these Salmonella species was greater with eltB than eltA. In addition, a synthetic oligonucleotide probe, made to a portion of the putative GM1-ganglioside binding region of cholera toxin (CT) and LT1, hybridized with the 9.4 kb DNA fragment of S. typhimurium but not with the 9.4 kb fragment found in S. typhi isolates. The hybridization of multiple restriction fragments of Salmonella DNA with eltA and eltB gene sequences further suggests duplication of the stx operon on the chromosome of these bacteria.  相似文献   

19.
Allyl chloride (3-chloroprene) is mutagenic for Salmonella typhimurium and it induces gene conversions in Saccharomyces cerevisiae. It also displays DNA-modifying activity for E. coli. This is in contrast to a recent study which reported its lack of genetic activity for Salmonella typhimurium.  相似文献   

20.
Two strains of Salmonella typhimurium LT2, SA1475 and MA411, were fortuitously found to be sensitive to bacteriophage Mu. The Mu-sensitivity allele of SA1475 was called musA1 and shown to be linked to the histidine operon both in conjugation and transduction experiments. The Mus allele of MA411 was unlinked to the his region and was tentatively designated musB2. Strains carrying large deletions of the his operon were also tested for Mu sensitivity; those of which the his-rib region is deleted were also sensitive to Mu. Transduction data led to the order zee-2 hisOGDCBAHFIE gnd musA. An Hfr injecting the his operon early (HfrK9) an carrying hisG9424::Tn10 delta 4 delta 11 and musA1 was isolated; this Hfr made it possible to introduce the Mus character into most derivatives of S. typhimurium LT2. Since strain SA1475 is resistant to bacteriophage P1, it could be used to select a new P1-Mu hybrid which has the host range of Mu and the transduction properties of P1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号