首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
The phylogeny of Old World monkeys has remained unresolved in part because of a lack of resolution in the Cercopithecinae. Competing morphological hypotheses have had Allen's swamp monkey (Allenopithecus nigroviridis) and the talapoins (Miopithecus spp.) as basal branches of either the tribe Cercopithecini or the tribe Papionini. Previous molecular analyses have not adequately addressed the issue. To better understand the evolutionary history of these primates, we sequenced and subjected to phylogenetic analysis 3.1 kb of 2 loci (TSPY and SRY) from the non-recombining portion of the Y-chromosome. Individuals from the genera Allenopithecus, Miopithecus, Erythrocebus, Chlorocebus, and Cercopithecus were surveyed and their sequences compared with those previously published for the Papionini and Colobinae. The results suggest Allenopithecus and Miopithecus are more closely related to the Cercopithecini than Papionini. Our data also support the hypothesis that within the Cercopithecini, Erythrocebus and Chlorocebus share a close evolutionary relationship, distinct from the other members of the tribe.  相似文献   

2.
Comparative banding studies in eight species of the family Cercopithecidae, subfamily Cercopithecinae allowed us to identify the chromosomes that have been conserved and those that have undergone structural changes. The results suggest that while the ancestral karyotype of the Cercopithecini was probably similar to that ofCercopithecus aethiops, the ancestral complement of the cercopithecinae was probably of the type now found in the Papionini. Thus, after their divergence, one of the groups maintained an extremely stable chromosomal complement (Papionini 2n=42) while the other underwent extreme chromosomal rearrangements (Cercopithecini 2n=48–72).  相似文献   

3.
A sample of 117 fossil cercopithecids has been collected from the Middle Pleistocene site of Asbole, Afar Region, Ethiopia. A minimum of five species is present. There are two species of Cercopithecini, here recognized as cf. Chlorocebus aff. aethiops, and cf. Chlorocebus cf. patas. There are also two species of Papionini: Papio hamadryas ssp. indet. and Theropithecus oswaldi leakeyi. Finally, there is a single species of colobine present, Colobus sp. indet. The assemblage is chronologically constrained and is derived from sediments dated to approximately 600 ka. Within this sample Colobus sp. is by far the most common species present, outnumbering the other four species combined. The cercopithecid assemblage is most consistent with a woodland habitat, corroborating an earlier interpretation based on the non-primate fauna. Taxonomic, biogeographic, and evolutionary implications of the assemblage are also discussed.  相似文献   

4.
Differences in the numbers of stamens and styles per flower are conspicuous features of variation in North American hawthorns (Crataegus L.). Variation in stamen number between individuals is discontinuous, with modes of approximately 20 and 10 (or fewer). In North American black-fruited sectionDouglasii Loudon the 10-stamen morphotype is exclusively polyploid, whereas the 20-stamen morphotype comprises both diploids and polyploids. Polyploidy is associated with apospory, self-fertility, and varying degrees of pollen sterility. Variation in stamen number may also be correlated with variation in distribution, phenology, leaf shape, and other features of floral morphology, leading to recognition of taxa at the specific or infraspecific level. Comparable variation in stamen number is virtually unknown in Eurasian hawthorns, as in the majority of flowering plants. In sectionDouglasii stamen number morphotypes have been recognized as either varieties or species; although correlations between stamen number and other features are not as straightforward as was previously surmised, the higher rank appears to be appropriate. These data on breeding system and morphological variation may be explainable in terms of hypotheses linking gametophytic apomixis, polyploidization, and optimal strategies for pollen dispersal.  相似文献   

5.
Among fossil primates, the Eocene adapiforms have been suggested as the closest relatives of living anthropoids (monkeys, apes, and humans). Central to this argument is the form of the second pedal digit. Extant strepsirrhines and tarsiers possess a grooming claw on this digit, while most anthropoids have a nail. While controversial, the possible presence of a nail in certain European adapiforms has been considered evidence for anthropoid affinities. Skeletons preserved well enough to test this idea have been lacking for North American adapiforms. Here, we document and quantitatively analyze, for the first time, a dentally associated skeleton of Notharctus tenebrosus from the early Eocene of Wyoming that preserves the complete bones of digit II in semi-articulation. Utilizing twelve shape variables, we compare the distal phalanges of Notharctus tenebrosus to those of extant primates that bear nails (n = 21), tegulae (n = 4), and grooming claws (n = 10), and those of non-primates that bear claws (n = 7). Quantitative analyses demonstrate that Notharctus tenebrosus possessed a grooming claw with a surprisingly well-developed apical tuft on its second pedal digit. The presence of a wide apical tuft on the pedal digit II of Notharctus tenebrosus may reflect intermediate morphology between a typical grooming claw and a nail, which is consistent with the recent hypothesis that loss of a grooming claw occurred in a clade containing adapiforms (e.g. Darwinius masillae) and anthropoids. However, a cladistic analysis including newly documented morphologies and thorough representation of characters acknowledged to have states constituting strepsirrhine, haplorhine, and anthropoid synapomorphies groups Notharctus tenebrosus and Darwinius masillae with extant strepsirrhines rather than haplorhines suggesting that the form of pedal digit II reflects substantial homoplasy during the course of early primate evolution.  相似文献   

6.
Huehuecuetzpalli mixtecus gen. et sp. nov. is characterized by a combination of characters unlike those of any of the previously described Late Jurassic or Early Cretaceous lizards. It has most of the synapomorphies common to modern squamates, but still retains primitive features rare in living taxa. Autapomorphic characters include an anteroposteriorly elongated premaxilla that results in the elongation of the snout and the apparent retraction of the external nares. A small rounded postfrontal and a parietal foramen on the frontoparietal suture suggest affinities with iguanians, but the retention of divided premaxillae, amphicoelous vertebrae, thoracolumbar intercentra, entepicondylar foramen, and a second distal tarsal supports the hypothesis that Huehuecuetzpalli has a more basal position relative to the extant squamates. Although its appearance is late in the fossil record of lizards, Huehuecuetzpalli is the first report of a basal squamate. It provides important information on early transformation of characters in lizard evolution. Many primitive characters present in some modern squamates are usually explained by paedomorphosis; however, these characters are common in early lizards suggesting that derived states may have been fixed later in lizard evolution. If Huehuecuetzpalli is an iguanian, then it would be the earliest known representative of this lineage and extends their fossil record into the Albian. This paper presents an extensive review of the characters and character states used in previously published cladistic analyses of the Squamata.  相似文献   

7.
8.
9.
The interrelationships within the clade comprised of turtles, pareiasaurs, and procolophonid-like taxa are investigated via a cladistic analysis incorporating 56 characters. A single most parsimonious tree was found (80 steps, c. i. = 0·8) in which the successive outgroups to turtles are: pareiasaurs, Sclerosaurus, lanthanosuchids, procolophonoids (=Owenetta, Barasaurus and procolophonids), and nyctiphruretians (= nycteroleterids). Thus, as suggested recently by other workers (Reisz, in Fischman, 1993) turtles are the highly modified survivors of a radiation of poorly-known reptiles commonly called ‘parareptiles’. Pareiasaurs are united with turtles on the basis of twenty unambiguous derived features which are absent in other basal amniotes (=‘primitive reptiles’) and reptiliomorph amphibians: for example, the medially located choana, enlarged foramina palatinum posterius, blunt cultriform process, fully ossified medial wall of the prootic, opisthotic-squamosal suture, lateral flange of exoccipital, loss of ventral cranial fissure, thickened braincase floor, ‘pleurosphenoid’ ossification, reduced presacral count, acromion process, trochanter major, reduced fifth pedal digit, and presence of transverse processes on most caudals. Recent phylogenetic proposals linking turtles with captorhinids, with dicynodonts, and with procolophonoids are evaluated. None of the proposed traits supporting the first two hypotheses is compelling. The procolophonoid hypotheses is supported by only one synapomorphy (the slender stapes). All other synapomorphies proposed in favour of the above groupings either occur in many other primitive amniotes, or are not primitive for turtles, or are not primitive for the proposed chelonian sister-group. Nyctiphruretus and Lanthanosuchids and nycteroleterids, often considered to be seymouriamorph amphibians, are demonstrated unequivocally to be amniotes. The ‘rhipaeosaurs’, currently considered to be pareiasaur relatives, are shown to be a heterogenous assemblage of seymouriamorphs, therapsids and nycteroleterids. The phylogeny proposed here indicates that many of the traits of the earliest known turtle, Proganochelys, previously interpreted as unique specialisations, also occur in pareiasaurs and other near outgroups of turtles, and must instead represent the primitive chelonian condition: for example, the wide parietals and the short quadrate flange of the pterygoid. The sequence of acquisition of chelonian traits is discussed: many features once thought to be diagnostic of turtles actually characterize larger groupings of procolophonomorphs, and must have evolved long before the chelonian shell appeared. These traits include most of the chelonian-pareiasaur synapomorphies listed above, and many others which characterize more inclusive groupings found in this analysis. In putting Proganochelys much closer to the main line of chelonian evolution, in elucidating the sequence of acquisition of chelonian traits, and in reducing greatly the number of differences between turtles and their nearest relatives, this study helps bridge one of the major gaps in the fossil record. The failure of previous cladistic analyses to identify correctly the nearest relatives of turtles is attributed to biased character selection, caused by an over-reliance on cranial characters deemed ‘important’ by earlier workers, and by a tendency to shoehorn ‘parareptile’ taxa into phylogenies derived from analyses restricted to ‘mainstream’ groups such as synapsids, diapsids, turtles, and ‘captorhinomorphs’. Many of the synapomorphies that resolve turtle origins are postcranial, and the three nearest outgroups to turtles are all highly bizarre groups which were dismissed as ‘too specialized’ by early workers and continued to be inadequately assessed even by workers using a cladistic framework.  相似文献   

10.
Ritualized courtship behaviors are used to recognize potential mates and behavioral patterns are inevitably different among populations that demonstrate reproductive incompatibility. We characterized and compared the courtship behaviors of two morphotypes of the cryptic species complex Anastrepha fraterculus: Brazil-1 morphotype and Brazil-3 morphotype. Courtship behaviors were filmed to analyze the behavioral sequences of these two morphotypes during homotypic crossings. The behavioral units Alignment (AL) and Abdominal movements (AB and AB-call) were newly recognized in the courtship ethogram of Anastrepha fraterculus males. The two morphotypes show distinct behavioral sequences leading up to copulation. Some behaviors were repeated frequently during the courtship process, while others were more restricted to the final moments of courtship. The three behavioral units that contributed most to copulation success were Contact, Alignment, and Arrowhead 1 in the Brazil-1 morphotype and Alignment, Arrowhead 1, and Fanning in the Brazil-3 morphotype. Some behavioral routines differed across the two morphotypes. Significant differences were also noted between the frequencies of the behavioral units displayed during courtship in the two morphotypes. The relationships between the pre-zygotic incompatibilities of the Brazil-1 and Brazil-3 morphotypes and the differences between the courtship behaviors of their males are discussed. Our results indicate that behavioral isolation is involved in the process of pre-zygotic reproductive isolation of Brazil-1 and Brazil-3 morphotypes.  相似文献   

11.
Xu X  Tan Q  Sullivan C  Han F  Xiao D 《PloS one》2011,6(9):e22916

Background

The Troodontidae represents one of the most bird-like theropod groups and plays an important role in our understanding of avian origins. Although troodontids have been known for over 150 years, few known derived troodontid specimens preserve significant portions of both the forelimb and the hindlimb.

Methodology/Principal Findings

Here, we report a new troodontid taxon, Linhevenator tani gen. et sp. nov., based on a partial, semi-articulated skeleton recovered from the Upper Cretaceous Wulansuhai Formation of Wulatehouqi, Inner Mongolia, China. L. tani has an unusual combination of primitive and derived character states, though our phylogenetic analysis places it in a derived clade within the Troodontidae. As a derived taxon, L. tani has a dromaeosaurid-like pedal digit II, and this species also possesses a humerus that is proportionally much shorter and more robust than those of most other troodontids.

Conclusion/Significance

The combination of features present in Linhevenator indicates a complex pattern of character evolution within the Troodontidae. In particular, the discovery of Linhevenator suggests that derived troodontids have independently evolved a highly specialized pedal digit II and have significantly shortened the forelimb over the course of their evolution.  相似文献   

12.
Teilhardina belgica is one of the most primitive fossil primates known to date and the earliest haplorhine with associated postcranials, making it relevant to a reconstruction of the ancestral primate morphotype. Here we describe newly discovered postcranial elements of T. belgica. It is a small primate with an estimated body mass between 30 and 60 g, similar to the size of a mouse lemur. Its hindlimb anatomy suggests frequent and forceful leaping with excellent foot mobility and grasping capabilities. It can now be established that this taxon exhibits critical primate postcranial synapomorphies such as a grasping hallux, a tall knee, and nailed digits. This anatomical pattern and behavioral profile is similar to what has been inferred before for other omomyids and adapiforms. The most unusual feature of T. belgica is its elongated middle phalanges (most likely manual phalanges), suggesting that this early primate had very long fingers similar to those of living tarsiers.  相似文献   

13.
The genus Leucheria Lag. (Asteraceae Bercht. and J. Presl, tribe Nassauvieae Cass.) comprises 45 species and three infraspecific taxa distributed in the Andean region from southern Chile and Argentina to Peru. Six species are annual herbs. The genus has had a long taxonomic history involving the transference of species described originally under many different genera. The main objectives of this paper were to determine the phylogenetic relationships of species of Leucheria, examine the hypothesis that the ancestor of Leucheria would have originated in a forested habitat and examine the validity of nine morphologically defined evolutionary lines recognized in earlier work on the genus. Additionally we investigated whether the annual species of Leucheria are derived. We extracted DNA from leaf material for 45 taxa (94%) of Leucheria. We used Bayesian inference and plastid and nuclear genes to construct a phylogenetic hypothesis. Results show that Leucheria is monophyletic and is comprised of two main clades. One clade comprises perennial acaulescent/subacaulescent species, all with a solitary capitulum. We recognized three lineages in the second clade comprised of caulescent species that exhibit multiple capitula. Optimization of life-form over the phylogeny showed that five of the six annual species studied are derived in our tree. We conclude that the appearance of the annual habit is associated with the colonization of arid conditions in the winter rainfall coastal desert of northern Chile. Our result shows that species of Leucheria from forested habitats are derived. Discrepancies with previously recognized morphologically defined evolutionary lines were detected.  相似文献   

14.
Traditional classifications of the Old World monkey tribe Papionini (Primates: Cercopithecinae) recognized the mangabey genera Cercocebus and Lophocebus as sister taxa. However, molecular studies have consistently found the mangabeys to be diphyletic, with Cercocebus and Mandrillus forming a clade to the exclusion of all other papionins. Recent studies have identified cranial and postcranial features which distinguish the Cercocebus-Mandrillus clade, however the detailed similarities in cranial shape between the mangabey genera are more difficult to reconcile with the molecular evidence. Given the large size differential between members of the papionin molecular clades, it has frequently been suggested that allometric effects account for homoplasy in papionin cranial form. A combination of geometric morphometric, bivariate, and multivariate methods was used to evaluate the hypothesis that allometric scaling contributes to craniofacial similarities between like-sized papionin taxa. Patterns of allometric and size-independent cranial shape variation were subsequently described and related to known papionin phylogenetic relationships and patterns of development.Results confirm that allometric scaling of craniofacial shape characterized by positive facial allometry and negative neurocranial allometry is present across adult papionins. Pairwise comparisons of regression lines among genera revealed considerable homogeneity of scaling within the Papionini, however statistically significant differences in regression lines also were noted. In particular, Cercocebus and Lophocebus exhibit a shared slope and significant vertical displacement of their allometric lines relative to other papionins. These findings give no support to narrowly construed hypotheses of uniquely shared patterns of allometric scaling, either between sister taxa or across all papionins. However, more general allometric trends do appear to account for a substantial proportion of papionin cranial shape variation, most notably in those features which have influenced traditional morphological phylogenies. Examination of size-uncorrelated shape variation gives no clear support to molecular phylogenies, but underscores the absence of morphometric similarities between the mangabey genera when size effects are controlled. Patterns of allometric and size-uncorrelated shape variation indicate conservatism of cranial form in non- Theropithecus papionins, and suggest that Papio represents the primitive morphometric pattern for the African papionins. Lophocebus exhibits a divergent morphometric pattern, clearly distinguishable from other papionins, most notably Cercocebus. These results clarify patterns of cranial shape variation among the extant Papionini and lay the groundwork for studies of related fossil taxa.  相似文献   

15.
African duikers in the subfamily Cephalophinae (genera Cephalophus, Philantomba and Sylvicapra) constitute an important target for DNA barcoding efforts because of their importance to the bushmeat trade and protection under the Convention for International Trade in Endangered Species (CITES). Duikers also make a challenging test case of barcoding methods due to their recent diversification, substantial intra-specific genetic variation and high species richness. However, no study to date has evaluated how well DNA barcoding methods can be used to delineate all of the taxa within this group. To address this question, cytochrome c oxidase subunit 1 (COX1) sequences from all eighteen species within this subfamily and an outgroup taxon (genus Tragelaphus) were used to build a neighbor-joining tree, identify species-specific diagnostic synapomorphies, and determine whether species exceed a given pair-wise genetic distance threshold commonly employed in DNA barcoding studies. Tree-based analyses of the data indicate that several species within two clusters of closely related taxa consistently failed to form reciprocally monophyletic clades and similarly lack species-specific synapomorphies. Furthermore, one additional taxon failed to constitute a diagnosable clade and another occupied an unresolved position in the tree. Of the two genetic distance criteria evaluated, the 3% threshold was far more effective in delimiting species than a threshold level based on the ratio of inter- to intra-specific distances. However, neither approach could effectively delineate all sister species. While the taxonomy of this group might be open to question, the fact that barcodes consistently failed to differentiate several currently recognized sister taxa challenges the routine application of this approach in forensic studies of duiker species. Future barcoding work of this group should always include a complete taxonomic sampling and strive to include a broader geographic sampling of sequence diversity than has been carried out to date. Lastly, this work highlights the need to re-examine the taxonomy of this group, which may illuminate why some barcoding criteria fail to reliably differentiate species.  相似文献   

16.
17.
Phylogenetic relationships of mangabeys within the Old World monkey tribe Papionini are inferred from analyses of nuclear DNA sequences from five unlinked loci. The following conclusions are strongly supported, based on congruence among trees derived for the five separate gene regions: (1) mangabeys are polyphyletic within the Papionini; (2) Cercocebus is the sister taxon to the genus Mandrillus; and (3) Lophocebus belongs to a clade with Papio and Theropithecus, with Papio as its most likely sister taxon. Morphologically based phylogenies positing mangabey monophyly were evaluated by mapping the sequences for each locus on these trees. The data seem to fit these trees poorly in both maximum-parsimony and likelihood analyses. Incongruence among nuclear gene trees occurred in the interrelationships among Lophocebus, Papio, and Theropithecus. Several factors that may account for this incongruence are discussed, including sampling error, random lineage sorting, and introgression.   相似文献   

18.
《Comptes Rendus Palevol》2003,2(6-7):535-546
Ontogenetic heterochronies: a tool to study both variability and phyletic relationships? Example: Nigericeras, Ammonitina of the african Upper Cretaceous. The Nigericeras gadeni ontogenesis (Saharian Upper Cretaceous) is characterized by three ornamental stages: multi-tuberculate inner-whorls, ombilical bi-tuberculate medium-whorls, then finally smooth adult stage. Ontogenetic Heterochonies account for their adult variability, which extends between both paedomorphic (thick/ornamented) morphotype, and peramorphic (thin/smooth) morphotype. That species may take root in the older Pseudocalycoceras. A peramorphocline characterizes the evolution of these ammonites and their younger relatives, leading to different Nigerian and Nigerien, highly compressed taxa. Such morphologies seem to be related to shallow-water palaeo-environments. The general transgressive context leads to the progressive scarcity of their supposed ecological niches. To cite this article: P. Courville, C. Crônier, C. R. Palevol 2 (2003).  相似文献   

19.
Ariid monophyly and intrafamilial relationships are investigated based on cladistic analysis of 230 morphological characters. Terminal taxa examined include whenever possible type‐species, or the most morphologically similar species to the type‐species of the nominal genera, and the largest possible number of species, including cleared and stained specimens, available in zoological collections. Previous hypotheses about monophyly of the Ariidae are strongly corroborated by new synapomorphies discovered in the present study. The subfamily Galeichthyinae and the remaining ariids are strongly supported by new morphological characters. The monotypic subfamily Bagreinae is recognized as the sister group to all nongaleichthyin ariids, supported by a large series of exclusive synapomorphies. A new concept of Ariinae is presented: the subfamily is found to be unequivocally monophyletic and includes all ariid genera, except Galeichthys and Bagre. New data supporting the monophyly of the genera included in the Ariinae are introduced and previous hypotheses of monophyly, species composition, morphological definition, and relationships are reviewed and discussed.  相似文献   

20.
We report here the results of the first molecular evolutionary analysis to include members of all 10 extant genera of cercopithecine monkeys. A total of 44 individuals were surveyed for approximately 2.2 kb of the testis-specific protein, Y-chromosome (TSPY). The TSPY sequences were subjected to parsimony analyses in PAUP 4.0, followed by tree comparison tests designed to assess existing morphological hypotheses of cercopithecine evolution. The results of these tests show that the present Y-chromosome dataset unambiguously supports: (1) monophyly of Macaca, (2) polyphyly of the mangabeys (Cercocebus and Lophocebus), (3) paraphyly of Cercopithecus, and (4) inclusion of Allenopithecus and Miopithecus in the tribe Cercopithecini. A number of unexpected Y-chromosome relationships are also discussed, including a pattern suggesting resurrection of the genus Chlorocebus for the guenons currently identified as Erythrocebus patas, Cercopithecus aethiops, and Cercopithecus lhoesti. Relative rate tests reveal significant difference in the TSPY substitution rate across numerous lineages in the tribe Cercopithecini. Because the rate differences follow no obvious phylogenetic pattern, "local" molecular clocks were not employed and divergence dates were not estimated for this tribe. In contrast, similar analysis of the Papionini reveals rate heterogeneity between a single pair of taxonomic groups: Macaca vs. the "African papionins." Divergence dates were therefore calculated for the tribe by calibrating TSPY clocks specific to each of these two clades.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号