首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The inhibition of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) main protease (Mpro) and papain-like protease (PLpro) prevents viral multiplications; these viral enzymes have been recognized as one of the most favorable targets for drug discovery against SARS-CoV-2. In the present study, we screened 225 phytocompounds present in 28 different Indian spices to identify compounds as potential inhibitors of SARS-CoV-2 Mpro and PLpro. Molecular docking, molecular dynamics simulation, molecular mechanics Poisson–Boltzmann surface area (MM-PBSA) binding free energy calculations, and absorption, distribution, metabolism, excretion and toxicity (ADMET) studies were done. Based on binding affinity, dynamics behavior, and binding free energies, the present study identifies pentaoxahexacyclo-dotriacontanonaen-trihydroxybenzoate derivative (PDT), rutin, and dihyroxy-oxan-phenyl-chromen-4-one derivative (DOC), luteolin-7-glucoside-4′-neohesperidoside as promising inhibitors of SARS-CoV-2 Mpro and PLpro, respectively.  相似文献   

2.
Ershov  P. V.  Yablokov  E. O.  Mezentsev  Y. V.  Chuev  G. N.  Fedotova  M. V.  Kruchinin  S. E.  Ivanov  A. S. 《Biophysics》2022,67(6):902-912
Biophysics - The papain-like protease PLpro of the SARS-CoV-2 coronavirus is a multifunctional enzyme that catalyzes the proteolytic processing of two viral polyproteins, pp1a and pp1ab. PLpro also...  相似文献   

3.
世界卫生组织已宣布新型冠状病毒感染(coronavirus disease 2019,COVID-19)的爆发为全球大流行。中和抗体和小分子抑制剂在预防及治疗COVID-19中发挥重要作用。尽管已开发出了多种中和抗体以及疫苗,但是随着病原体严重急性呼吸综合征冠状病毒2(severe acute respiratory syndrome coronavirus 2,SARS-CoV-2)的不断变异,现有的抗体及疫苗面临巨大的挑战。小分子抑制剂主要通过干扰病毒与宿主的结合以及病毒自身的复制达到消灭病毒以及抑制病毒感染的作用,并且对SARS-CoV-2突变株具有广谱抑制作用,是当前研究的热点。近年来国内外学者对SARS-CoV-2的小分子抑制剂做了大量的研究工作,本文根据中和抗体识别的抗原表位以及小分子抑制剂的作用机制分别对用于预防及治疗COVID-19的中和抗体和小分子抑制剂进行综述,讨论其研究现状,并展望小分子抑制剂的应用前景,以期为该领域的进一步研究提供参考。  相似文献   

4.
Middle East respiratory syndrome coronavirus (MERS-CoV) is associated with an outbreak of more than 90 cases of severe pneumonia with high mortality (greater than 50%). To date, there are no antiviral drugs or specific therapies to treat MERS-CoV. To rapidly identify potential inhibitors of MERS-CoV replication, we expressed the papain-like protease (PLpro) and the 3-chymotrypsin-like protease (3CLpro) from MERS-CoV and developed luciferase-based biosensors to monitor protease activity in cells. We show that the expressed MERS-CoV PLpro recognizes and processes the canonical CoV-PLpro cleavage site RLKGG in the biosensor. However, existing CoV PLpro inhibitors were unable to block MERS-CoV PLpro activity, likely due to the divergence of the amino acid sequence in the drug binding site. To investigate MERS-CoV 3CLpro activity, we expressed the protease in context with flanking nonstructural protein 4 (nsp4) and the amino-terminal portion of nsp6 and detected processing of the luciferase-based biosensors containing the canonical 3CLpro cleavage site VRLQS. Importantly, we found that a small-molecule inhibitor that blocks replication of severe acute respiratory syndrome (SARS) CoV and murine CoV also inhibits the activity of MERS-CoV 3CLpro. Overall, the protease expression and biosensor assays developed here allow for rapid evaluation of viral protease activity and the identification of protease inhibitors. These biosensor assays can now be used to screen for MERS-CoV-specific or broad-spectrum coronavirus PLpro and 3CLpro inhibitors.  相似文献   

5.
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has become a global health concern. Various SARS-CoV-2 vaccines have been developed and are being used for vaccination worldwide. However, no therapeutic agents against coronavirus disease 2019 (COVID-19) have been developed so far; therefore, new therapeutic agents are urgently needed. In the present study, we evaluated several hepatitis C virus direct-acting antivirals as potential candidates for drug repurposing against COVID-19. Theses include asunaprevir (a protease inhibitor), daclatasvir (an NS5A inhibitor), and sofosbuvir (an RNA polymerase inhibitor). We found that asunaprevir, but not sofosbuvir and daclatasvir, markedly inhibited SARS-CoV-2-induced cytopathic effects in Vero E6 cells. Both RNA and protein levels of SARS-CoV-2 were significantly decreased by treatment with asunaprevir. Moreover, asunaprevir profoundly decreased virion release from SARS-CoV-2-infected cells. A pseudoparticle entry assay revealed that asunaprevir blocked SARS-CoV-2 infection at the binding step of the viral life cycle. Furthermore, asunaprevir inhibited SARS-CoV-2 propagation in human lung Calu-3 cells. Collectively, we found that asunaprevir displays broad-spectrum antiviral activity and therefore might be worth developing as a new drug repurposing candidate for COVID-19.  相似文献   

6.
2019年12月,由新型冠状病毒(SARS-CoV-2)引起的新型冠状病毒肺炎(COVID-19)在中国武汉暴发。SARS-CoV-2的基因组编码2种病毒蛋白酶,即木瓜样蛋白酶(Papain-like protease,PLpro)和3C样蛋白酶(3C-like protease)。其中PLpro是SARS-CoV-2复制酶复合体(RC)形成的重要调节蛋白分子,对于病毒基因组转录和复制至关重要。因此,将SARS-CoV-2 PLpro作为药物的靶点对COVID-19的治疗具有积极意义。本研究应用生物信息学工具分析新型冠状病毒的木瓜样蛋白酶的结构和功能,首先利用BLAST和BioEdit获取SARS-CoV-2 PLpro蛋白酶(SC2-PLpro)及其同源蛋白的氨基酸序列,并利用BLAST和MEGA 6.0进行同源性分析。之后,利用ProParam和Proscale分别对SC2-PLpro蛋白酶的理化性质、亲水性和疏水性进行分析。然后,通过SOMPA、ScanProsite和InterPro分别预测SC2-PLpro蛋白酶的二级结构和功能区域,进一步利用SignalP 4.0和TMHMM对SC2-PLpro蛋白酶的信号肽和跨膜区进行分析。最后,通过SWISS-MODEL对SARS-CoV-2 PLpro蛋白酶进行三级结构同源建模。结果显示,对SARS-CoV-2 PLpro蛋白酶与已报道的PLpro蛋白酶进行多序列比对后,发现SARS-CoV-2 nsp3的746~1063段氨基酸与多种冠状病毒PLpro蛋白酶氨基酸序列高度相似。同时,同源性分析发现SARS-CoV-2与蝙蝠冠状病毒的PLpro蛋白酶具有同源性,其中与QHR63299、AVP78030相似性最高。对SC2-PLpro进行理化性质预测结果显示,其由318个氨基酸所组成,为稳定亲水性蛋白。二级结构预测结果显示SC2-PLpro主要含有α-螺旋、延伸链、β-转角、无规卷曲,四种结构贯穿整条氨基酸链。进一步进行功能分析,发现其具有完整的催化三联体、锌结合域、泛素样N末端结构域,故推测该蛋白具有去泛素化的功能。然后,信号肽假说和跨膜结构域分析结果表明,SC2-PLpro既不是分泌蛋白,也不属于跨膜蛋白。本研究提示,生物信息学分析SC2-PLpro为稳定性亲水蛋白,属于非跨膜蛋白,比较保守,具有去泛素化的功能,利用此功能可以进一步规避宿主的固有免疫反应。通过制备PLpro蛋白酶小分子抑制剂,可能有助于治疗新型冠状病毒肺炎。  相似文献   

7.
The Coronavirus Disease 2019 (COVID-19) pandemic caused by the novel lineage B betacoroanvirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in significant mortality, morbidity, and socioeconomic disruptions worldwide. Effective antivirals are urgently needed for COVID-19. The main protease (Mpro) of SARS-CoV-2 is an attractive antiviral target because of its essential role in the cleavage of the viral polypeptide. In this study, we performed an in silico structure-based screening of a large chemical library to identify potential SARS-CoV-2 Mpro inhibitors. Among 8,820 compounds in the library, our screening identified trichostatin A, a histone deacetylase inhibitor and an antifungal compound, as an inhibitor of SARS-CoV-2 Mpro activity and replication. The half maximal effective concentration of trichostatin A against SARS-CoV-2 replication was 1.5 to 2.7µM, which was markedly below its 50% effective cytotoxic concentration (75.7µM) and peak serum concentration (132µM). Further drug compound optimization to develop more stable analogues with longer half-lives should be performed. This structure-based drug discovery platform should facilitate the identification of additional enzyme inhibitors of SARS-CoV-2.  相似文献   

8.
9.
Severe acute respiratory syndrome (SARS) coronavirus (CoV) 2 (SARS-CoV-2), which causes the coronavirus disease 2019, encodes several proteins whose roles are poorly understood. We tested their ability either to directly form plasma membrane ion channels or to change functions of two mammalian plasma membrane ion channels, the epithelial sodium channel (ENaC) and the α3β4 nicotinic acetylcholine receptor. In mRNA-injected Xenopus oocytes, none of nine SARS-CoV-2 proteins or two SARS-CoV-1 proteins produced conductances, nor did co-injection of several combinations. Immunoblots for ORF8, spike (S), and envelope (E) proteins revealed that the proteins are expressed at appropriate molecular weights. In experiments on coexpression with ENaC, three tested SARS proteins (SARS-CoV-1 E, SARS-CoV-2 E, and SARS-CoV-2 S) markedly decrease ENaC currents. SARS-CoV-1 S protein decreases ENaC currents modestly. Coexpressing the E proteins but not the S proteins with α3β4 nicotinic acetylcholine receptors significantly reduces acetylcholine-induced currents. ENaC inhibition does not occur if the SARS-CoV protein mRNAs are injected 24 h after the ENaC mRNAs, suggesting that SARS-CoV proteins affect early step(s) in functional expression of channel proteins. Consistent with the hypothesis that the SARS-CoV-2 S protein-induced ENaC inhibition involves competition for available protease, mutating the furin cleavage site in SARS-CoV-2 S protein partially relieves inhibition of ENaC currents. Extending previous suggestions that SARS proteins affect ENaC currents via protein kinase C (PKC) activation, PKC activation via phorbol 12-myristate 13-acetate decreases ENaC and α3β4 activity. Phorbol 12-myristate 13-acetate application reduced membrane capacitance ~5%, presumably via increased endocytosis, but this decrease is much smaller than the SARS proteins’ effects on conductances. Also, incubating oocytes in Gö-6976, a PKCα and PKCβ inhibitor, did not alter E or S protein-induced channel inhibition. We conclude that SARS-CoV-1 and SARS-CoV-2 proteins alter the function of human plasma membrane channels, via incompletely understood mechanisms. These interactions may play a role in the coronavirus 2019 pathophysiology.  相似文献   

10.
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S) protein mediates infection of cells expressing angiotensin-converting enzyme 2 (ACE2). ACE2 is also the viral receptor of SARS-CoV (SARS-CoV-1), a related coronavirus that emerged in 2002–2003. Horseshoe bats (genus Rhinolophus) are presumed to be the original reservoir of both viruses, and a SARS-like coronavirus, RaTG13, closely related to SARS-CoV-2, has been identified in one horseshoe-bat species. Here we characterize the ability of the S-protein receptor-binding domains (RBDs) of SARS-CoV-1, SARS-CoV-2, pangolin coronavirus (PgCoV), RaTG13, and LyRa11, a bat virus similar to SARS-CoV-1, to bind a range of ACE2 orthologs. We observed that the PgCoV RBD bound human ACE2 at least as efficiently as the SARS-CoV-2 RBD, and that both RBDs bound pangolin ACE2 efficiently. We also observed a high level of variability in binding to closely related horseshoe-bat ACE2 orthologs consistent with the heterogeneity of their RBD-binding regions. However five consensus horseshoe-bat ACE2 residues enhanced ACE2 binding to the SARS-CoV-2 RBD and neutralization of SARS-CoV-2 pseudoviruses by an enzymatically inactive immunoadhesin form of human ACE2 (hACE2-NN-Fc). Two of these mutations impaired neutralization of SARS-CoV-1 pseudoviruses. An hACE2-NN-Fc variant bearing all five mutations neutralized both SARS-CoV-2 pseudovirus and infectious virus more efficiently than wild-type hACE2-NN-Fc. These data suggest that SARS-CoV-1 and -2 originate from distinct bat species, and identify a more potently neutralizing form of soluble ACE2.  相似文献   

11.
The severe acute respiratory syndrome coronavirus papain-like protease (SARS-CoV PLpro) is involved in the processing of the viral polyprotein and, thereby, contributes to the biogenesis of the virus replication complex. Structural bioinformatics has revealed a relationship for the SARS-CoV PLpro to herpesvirus-associated ubiquitin-specific protease (HAUSP), a ubiquitin-specific protease, indicating potential deubiquitinating activity in addition to its function in polyprotein processing (T. Sulea, H. A. Lindner, E. O. Purisima, and R. Menard, J. Virol. 79:4550-4551, 2005). In order to confirm this prediction, we overexpressed and purified SARS-CoV PLpro (amino acids [aa]1507 to 1858) from Escherichia coli. The purified enzyme hydrolyzed ubiquitin-7-amino-4-methylcoumarin (Ub-AMC), a general deubiquitinating enzyme substrate, with a catalytic efficiency of 13,100 M(-1)s(-1), 220-fold more efficiently than the small synthetic peptide substrate Z-LRGG-AMC, which incorporates the C-terminal four residues of ubiquitin. In addition, SARS-CoV PLpro was inhibited by the specific deubiquitinating enzyme inhibitor ubiquitin aldehyde, with an inhibition constant of 210 nM. The purified SARS-CoV PLpro disassembles branched polyubiquitin chains with lengths of two to seven (Ub2-7) or four (Ub4) units, which involves isopeptide bond cleavage. SARS-CoV PLpro processing activity was also detected against a protein fused to the C terminus of the ubiquitin-like modifier ISG15, both in vitro using the purified enzyme and in HeLa cells by coexpression with SARS-CoV PLpro (aa 1198 to 2009). These results clearly establish that SARS-CoV PLpro is a deubiquitinating enzyme, thereby confirming our earlier prediction. This unexpected activity for a coronavirus papain-like protease suggests a novel viral strategy to modulate the host cell ubiquitination machinery to its advantage.  相似文献   

12.
Hydroxychloroquine, used to treat malaria and some autoimmune disorders, potently inhibits viral infection of SARS coronavirus (SARS-CoV-1) and SARS-CoV-2 in cell-culture studies. However, human clinical trials of hydroxychloroquine failed to establish its usefulness as treatment for COVID-19. This compound is known to interfere with endosomal acidification necessary to the proteolytic activity of cathepsins. Following receptor binding and endocytosis, cathepsin L can cleave the SARS-CoV-1 and SARS-CoV-2 spike (S) proteins, thereby activating membrane fusion for cell entry. The plasma membrane-associated protease TMPRSS2 can similarly cleave these S proteins and activate viral entry at the cell surface. Here we show that the SARS-CoV-2 entry process is more dependent than that of SARS-CoV-1 on TMPRSS2 expression. This difference can be reversed when the furin-cleavage site of the SARS-CoV-2 S protein is ablated or when it is introduced into the SARS-CoV-1 S protein. We also show that hydroxychloroquine efficiently blocks viral entry mediated by cathepsin L, but not by TMPRSS2, and that a combination of hydroxychloroquine and a clinically-tested TMPRSS2 inhibitor prevents SARS-CoV-2 infection more potently than either drug alone. These studies identify functional differences between SARS-CoV-1 and -2 entry processes, and provide a mechanistic explanation for the limited in vivo utility of hydroxychloroquine as a treatment for COVID-19.  相似文献   

13.
The SARS-CoV-2 coronavirus is the causal agent of the current global pandemic. SARS-CoV-2 belongs to an order, Nidovirales, with very large RNA genomes. It is proposed that the fidelity of coronavirus (CoV) genome replication is aided by an RNA nuclease complex, comprising the non-structural proteins 14 and 10 (nsp14–nsp10), an attractive target for antiviral inhibition. Our results validate reports that the SARS-CoV-2 nsp14–nsp10 complex has RNase activity. Detailed functional characterization reveals nsp14–nsp10 is a versatile nuclease capable of digesting a wide variety of RNA structures, including those with a blocked 3′-terminus. Consistent with a role in maintaining viral genome integrity during replication, we find that nsp14–nsp10 activity is enhanced by the viral RNA-dependent RNA polymerase complex (RdRp) consisting of nsp12–nsp7–nsp8 (nsp12–7–8) and demonstrate that this stimulation is mediated by nsp8. We propose that the role of nsp14–nsp10 in maintaining replication fidelity goes beyond classical proofreading by purging the nascent replicating RNA strand of a range of potentially replication-terminating aberrations. Using our developed assays, we identify drug and drug-like molecules that inhibit nsp14–nsp10, including the known SARS-CoV-2 major protease (Mpro) inhibitor ebselen and the HIV integrase inhibitor raltegravir, revealing the potential for multifunctional inhibitors in COVID-19 treatment.  相似文献   

14.
A new coronavirus(SARS-CoV-2)has been identified as the etiologic agent for the COVID-19 outbreak.Currently,effective treatment options remain very limited for this disease;therefore,there is an urgent need to identify new anti-COVID-19 agents.In this study,we screened over 6,000 compounds that included approved drugs,drug candidates in clinical trials,and pharmacologically active compounds to identify leads that target the SARS-CoV-2 papain-like protease(PLpro).Together with main protease(Mpro),PLpro is responsible for processing the viral replicase polyprotein into functional units.There-fore,it is an attractive target for antiviral drug develop-ment.Here we discovered four compounds,YM155,cryptotanshinone,tanshinone I and GRL0617 that inhibit SARS-CoV-2 PLpro with IC50 values ranging from 1.39 to 5.63 pmol/L.These compounds also exhibit strong antiviral activities in cell-based assays.YM155,an anti-cancer drug candidate in clinical trials,has the most potent antiviral activity with an EC50 value of 170 nmol/L.In addition,we have determined the crystal structures of this enzyme and its complex with YM155,revealing a unique binding mode.YM155 simultaneously targets three"hot"spots on PLpro,including the substrate-binding pocket,the interferon stimulating gene product 15(ISG15)binding site and zinc finger motif.Our results demonstrate the efficacy of this screening and repur-posing strategy,which has led to the discovery of new drug leads with clinical potential for COVID-19 treatments.  相似文献   

15.
BackgroundThe outbreak of coronavirus (SARS-CoV-2) disease caused more than 100,000,000 people get infected and over 2,200,000 people being killed worldwide. However, the current developed vaccines or drugs may be not effective in preventing the pandemic of COVID-19 due to the mutations of coronavirus and the severe side effects of the newly developed vaccines. Chinese herbal medicines and their active components play important antiviral activities. Corilagin exhibited antiviral effect on human immunodeficiency virus (HIV), hepatitis C virus (HCV) and Epstein-Barr virus (EBV). However, whether it blocks the interaction between SARS-CoV-2 RBD and hACE2 has not been elucidated.PurposeTo characterize an active compound, corilagin derived from Phyllanthus urinaria as potential SARS-CoV-2 entry inhibitors for its possible preventive application in daily anti-virus hygienic products.MethodsComputational docking coupled with bio-layer interferometry, BLI were adopted to screen more than 1800 natural compounds for the identification of SARS-CoV-2 spike-RBD inhibitors. Corilagin was confirmed to have a strong binding affinity with SARS-CoV-2-RBD or human ACE2 (hACE2) protein by the BLI, ELISA and immunocytochemistry (ICC) assay. Furthermore, the inhibitory effect of viral infection of corilagin was assessed by in vitro pseudovirus system. Finally, the toxicity of corilagin was examined by using MTT assay and maximal tolerated dose (MTD) studies in C57BL/6 mice.ResultsCorilagin preferentially binds to a pocket that contains residues Cys 336 to Phe 374 of spike-RBD with a relatively low binding energy of -9.4 kcal/mol. BLI assay further confirmed that corilagin exhibits a relatively strong binding affinity to SARS-CoV-2-RBD and hACE2 protein. In addition, corilagin dose-dependently blocks SARS-CoV-2-RBD binding and abolishes the infectious property of RBD-pseudotyped lentivirus in hACE2 overexpressing HEK293 cells, which mimicked the entry of SARS-CoV-2 virus in human host cells. Finally, in vivo studies revealed that up to 300 mg/kg/day of corilagin was safe in C57BL/6 mice. Our findings suggest that corilagin could be a safe and potential antiviral agent against the COVID-19 acting through the blockade of the fusion of SARS-CoV-2 spike-RBD to hACE2 receptors.ConclusionCorilagin could be considered as a safe and environmental friendly anti-SARS-CoV-2 agent for its potential preventive application in daily anti-virus hygienic products.  相似文献   

16.
Increasing resistance of bacteria to antibiotics is a serious global challenge and there is a need to unlock the potential of novel antibacterial targets. One such target is the essential prokaryotic endoribonuclease RNase E. Using a combination of in silico high-throughput screening and in vitro validation we have identified three novel small molecule inhibitors of RNase E that are active against RNase E from Escherichia coli, Francisella tularensis and Acinetobacter baumannii. Two of the inhibitors are non-natural small molecules that could be suitable as lead compounds for the development of broad-spectrum antibiotics targeting RNase E. The third small molecule inhibitor is glucosamine-6-phosphate, a precursor of bacterial cell envelope peptidoglycans and lipopolysaccharides, hinting at a novel metabolite-mediated mechanism of regulation of RNase E.  相似文献   

17.
The COVID-19 pandemic, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is still affecting people worldwide. Despite the good degree of immunological protection achieved through vaccination, there are still severe cases that require effective antivirals. In this sense, two specific pharmaceutical preparations have been marketed already, the RdRp polymerase inhibitor molnupiravir and the main viral protease inhibitor nirmatrelvir (commercialized as Paxlovid, a combination with ritonavir). Nirmatrelvir is a peptidomimetic acting as orally available, covalent, and reversible inhibitor of SARS-CoV-2 main viral protease. The success of this compound has revitalized the search for new peptide and peptidomimetic protease inhibitors. This highlight collects some selected examples among those recently published in the field of SARS-CoV-2.  相似文献   

18.
The lack of antiviral innate immune responses during severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections is characterized by limited production of interferons (IFNs). One protein associated with Aicardi–Goutières syndrome, SAMHD1, has been shown to negatively regulate the IFN-1 signaling pathway. However, it is unclear whether elevated IFN signaling associated with genetic loss of SAMHD1 would affect SARS-CoV-2 replication. In this study, we established in vitro tissue culture model systems for SARS-CoV-2 and human coronavirus OC43 infections in which SAMHD1 protein expression was absent as a result of CRISPR–Cas9 gene KO or lentiviral viral protein X–mediated proteosomal degradation. We show that both SARS-CoV-2 and human coronavirus OC43 replications were suppressed in SAMHD1 KO 293T and differentiated THP-1 macrophage cell lines. Similarly, when SAMHD1 was degraded by virus-like particles in primary monocyte-derived macrophages, we observed lower levels of SARS-CoV-2 RNA. The loss of SAMHD1 in 293T and differentiated THP-1 cells resulted in upregulated gene expression of IFNs and innate immunity signaling proteins from several pathways, with STAT1 mRNA being the most prominently elevated ones. Furthermore, SARS-CoV-2 replication was significantly increased in both SAMHD1 WT and KO cells when expression and phosphorylation of STAT1 were downregulated by JAK inhibitor baricitinib, which over-rode the activated antiviral innate immunity in the KO cells. This further validates baricitinib as a treatment of SARS-CoV-2–infected patients primarily at the postviral clearance stage. Overall, our tissue culture model systems demonstrated that the elevated innate immune response and IFN activation upon genetic loss of SAMHD1 effectively suppresses SARS-CoV-2 replication.  相似文献   

19.
由严重急性呼吸综合征冠状病毒2型(severe acute respiratory syndrome coronavirus 2,SARS-CoV-2)感染引起的2019冠状病毒病(coronavirus disease 2019,COVID-19)暴发,给人类公共卫生安全和全球经济发展造成了严重威胁。疫苗和药物是防治疫情的重要手段,但目前研发的针对冠状病毒的疫苗和药物大多以SARS-CoV-2为靶点,该病毒若发生重大突变或出现新的高致病性冠状病毒,目前研发的有效疫苗或药物可能会无效,而且疫苗和新药的研发往往比较滞后,难以在疫情发生早期投入使用。因此,亟须研发高效、安全、广谱的冠状病毒疫苗和药物,以应对未来可能出现的冠状病毒疫情。本文对广谱冠状病毒疫苗和抗冠状病毒多肽的研究进展进行综述,期望为研发此类疫苗和药物提供参考。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号