首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Clonally variant gene expression is a common survival strategy used by many pathogens, including the malaria parasite Plasmodium falciparum. Among the genes that show variant expression in this parasite are several members of small gene families linked to erythrocyte invasion, including the clag and eba families. The active or repressed state of these genes is clonally transmitted by epigenetic mechanisms. Here we characterized the promoters of clag3.1, clag3.2 and eba-140, and compared nuclease accessibility and post-translational histone modifications between their active and repressed states. Activity of these promoters in an episomal context is similar between parasite subclones characterized by different patterns of expression of the endogenous genes. Variant expression is controlled by the euchromatic or heterochromatic state of bistable chromatin domains. Repression is mediated by H3K9me3-based heterochromatin, whereas the active state is characterized by H3K9ac. These marks are maintained throughout the asexual blood cycle to transmit the epigenetic memory. Furthermore, eba-140 is organized in two distinct chromatin domains, probably separated by a barrier insulator located within its ORF. The 5' chromatin domain controls expression of the gene, whereas the 3' domain shares the chromatin conformation with the upstream region of the neighbouring phista family gene, which also shows variant expression.  相似文献   

2.
Combinations of histones carrying different covalent modifications are a major component of epigenetic variation. We have mapped nine modified histones in the barley seedling epigenome by chromatin immunoprecipitation next‐generation sequencing (ChIP‐seq). The chromosomal distributions of the modifications group them into four different classes, and members of a given class also tend to coincide at the local DNA level, suggesting that global distribution patterns reflect local epigenetic environments. We used this peak sharing to define 10 chromatin states representing local epigenetic environments in the barley genome. Five states map mainly to genes and five to intergenic regions. Two genic states involving H3K36me3 are preferentially associated with constitutive gene expression, while an H3K27me3‐containing genic state is associated with differentially expressed genes. The 10 states display striking distribution patterns that divide barley chromosomes into three distinct global environments. First, telomere‐proximal regions contain high densities of H3K27me3 covering both genes and intergenic DNA, together with very low levels of the repressive H3K27me1 modification. Flanking these are gene‐rich interior regions that are rich in active chromatin states and have greatly decreased levels of H3K27me3 and increasing amounts of H3K27me1 and H3K9me2. Lastly, H3K27me3‐depleted pericentromeric regions contain gene islands with active chromatin states separated by extensive retrotransposon‐rich regions that are associated with abundant H3K27me1 and H3K9me2 modifications. We propose an epigenomic framework for barley whereby intergenic H3K27me3 specifies facultative heterochromatin in the telomere‐proximal regions and H3K27me1 is diagnostic for constitutive heterochromatin elsewhere in the barley genome.  相似文献   

3.
转录因子对顺势调控元件的选择性结合,在哺乳动物细胞类型特异的基因表达中扮演重要的角色.这个过程受到染色质表观遗传状态的潜在调控.近期,染色质免疫共沉淀结合测序的研究提供了大量泛基因组水平的数据,阐述转录因子结合以及组蛋白修饰的位点,这为系统地研究转录因子和表观遗传标记之间的空间及调控关系提供了基础.该研究对公共数据库中的染色质免疫共沉淀结合测序数据进行整合分析,涉及5个细胞系中的85种转录因子、9种组蛋白修饰,目的是研究转录因子结合位点与组蛋白修饰模式以及基因表达在泛基因组水平上的关联.作者发现,不同转录因子与组蛋白修饰的共定位模式高度一致,并且组蛋白修饰在距离转录因子结合位点约500碱基对的位置富集.作者还发现,转录因子结合位点的占有率与活性组蛋白修饰的水平和双峰模式正相关,并且启动子区域组蛋白修饰的双峰和共定位模式和基因的高转录水平相一致.组蛋白修饰模式、转录因子结合位点的占有率与基因转录之间的关联暗示了细胞可能利用的基因表达调控机制.  相似文献   

4.
5.
6.
With the emergence of new CRISPR/dCas9 tools that enable site specific modulation of DNA methylation and histone modifications, more detailed investigations of the contribution of epigenetic regulation to the precise phenotype of cells in culture, including recombinant production subclones, is now possible. These also allow a wide range of applications in metabolic engineering once the impact of such epigenetic modifications on the chromatin state is available.In this study, enhanced DNA methylation tools were targeted to a recombinant viral promoter (CMV), an endogenous promoter that is silenced in its native state in CHO cells, but had been reactivated previously (β-galactoside α-2,6-sialyltransferase 1) and an active endogenous promoter (α-1,6-fucosyltransferase), respectively. Comparative ChIP-analysis of histone modifications revealed a general loss of active promoter histone marks and the acquisition of distinct repressive heterochromatin marks after targeted methylation. On the other hand, targeted demethylation resulted in autologous acquisition of active promoter histone marks and loss of repressive heterochromatin marks. These data suggest that DNA methylation directs the removal or deposition of specific histone marks associated with either active, poised or silenced chromatin. Moreover, we show that de novo methylation of the CMV promoter results in reduced transgene expression in CHO cells. Although targeted DNA methylation is not efficient, the transgene is repressed, thus offering an explanation for seemingly conflicting reports about the source of CMV promoter instability in CHO cells.Importantly, modulation of epigenetic marks enables to nudge the cell into a specific gene expression pattern or phenotype, which is stabilized in the cell by autologous addition of further epigenetic marks. Such engineering strategies have the added advantage of being reversible and potentially tunable to not only turn on or off a targeted gene, but also to achieve the setting of a desirable expression level.  相似文献   

7.
8.
9.
10.
11.
12.
13.
14.
Post-translational modifications of the N-terminal histone tails, including lysine methylation, have key roles in regulation of chromatin and gene expression. A number of protein modules have been identified that recognize differentially modified histone tails and provide their proteins with the capacity to sense such modifications. Here, we identify the CW domain of plant and animal chromatin-related proteins as a novel module that recognizes different methylated states of lysine 4 on histone H3 (H3K4me). The solution structure of the CW domain of the Arabidopsis ASH1 HOMOLOG2 (ASHH2) histone methyltransferase provides insight into how different CW domains can distinguish different methylated histone tails. We provide evidence that ASHH2 is acting on H3K4me-marked genes, allowing for ASHH2-dependent H3K36 tri-methylation, which contributes to sustained expression of tissue-specific and developmentally regulated genes. This suggests that ASHH2 is a combined 'reader' and 'writer' of the histone code. We propose that different CW domains, dependent on their specificity for different H3K4 methylations, are important for epigenetic memory or participate in switching between permissive and repressive chromatin states.  相似文献   

15.
16.
17.
18.
The developmental switch of globin gene expression is a characteristic feature of vertebrate organisms. The switch of β-globin expression is believed to depend on reconfiguration of the active chromatin hub, which contains transcribed genes and regulatory elements. Mechanisms controlling the switch of α-globin gene expression are less clear. Here, we studied the mode of chromatin packaging of the chicken α-globin gene domain in red blood cells (RBCs) of primitive and definite lineages and the spatial configuration of this domain in RBCs of primitive lineage. It has been demonstrated that RBCs of primitive lineage already contain the adult-type active chromatin hub but the embryonal α-type globin π gene is not recruited to this hub. Distribution of active and repressive histone modifications over the α-globin gene domain in RBCs of definite and primitive lineages does not corroborate the hypothesis that inactivation of the π gene in RBCs of adult lineage is mediated via formation of a local repressed chromatin domain. This conclusion is supported by the demonstration that in chicken erythroblasts of adult lineage, the embryonal and adult segments of the α-globin gene domain show similar elevated sensitivities to DNase I.  相似文献   

19.
《Epigenetics》2013,8(12):1481-1488
The developmental switch of globin gene expression is a characteristic feature of vertebrate organisms. The switch of β-globin expression is believed to depend on reconfiguration of the active chromatin hub, which contains transcribed genes and regulatory elements. Mechanisms controlling the switch of α-globin gene expression are less clear. Here, we studied the mode of chromatin packaging of the chicken α-globin gene domain in red blood cells (RBCs) of primitive and definite lineages and the spatial configuration of this domain in RBCs of primitive lineage. It has been demonstrated that RBCs of primitive lineage already contain the adult-type active chromatin hub but the embryonal α-type globin π gene is not recruited to this hub. Distribution of active and repressive histone modifications over the α-globin gene domain in RBCs of definite and primitive lineages does not corroborate the hypothesis that inactivation of the π gene in RBCs of adult lineage is mediated via formation of a local repressed chromatin domain. This conclusion is supported by the demonstration that in chicken erythroblasts of adult lineage, the embryonal and adult segments of the α-globin gene domain show similar elevated sensitivities to DNase I.  相似文献   

20.
Chromatin modifications and heterochromatic marks have been shown to be involved in the regulation of secondary metabolism gene clusters in the fungal model system Aspergillus nidulans. We examine here the role of HEP1, the heterochromatin protein homolog of Fusarium graminearum, for the production of secondary metabolites. Deletion of Hep1 in a PH-1 background strongly influences expression of genes required for the production of aurofusarin and the main tricothecene metabolite DON. In the Hep1 deletion strains AUR genes are highly up-regulated and aurofusarin production is greatly enhanced suggesting a repressive role for heterochromatin on gene expression of this cluster. Unexpectedly, gene expression and metabolites are lower for the trichothecene cluster suggesting a positive function of Hep1 for DON biosynthesis. However, analysis of histone modifications in chromatin of AUR and DON gene promoters reveals that in both gene clusters the H3K9me3 heterochromatic mark is strongly reduced in the Hep1 deletion strain. This, and the finding that a DON-cluster flanking gene is up-regulated, suggests that the DON biosynthetic cluster is repressed by HEP1 directly and indirectly. Results from this study point to a conserved mode of secondary metabolite (SM) biosynthesis regulation in fungi by chromatin modifications and the formation of facultative heterochromatin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号