共查询到20条相似文献,搜索用时 0 毫秒
1.
Alicia Cock‐Rada Jonathan B. Weitzman 《Biology of the cell / under the auspices of the European Cell Biology Organization》2013,105(2):73-90
The metastatic cascade which leads to the death of cancer patients results from a multi‐step process of tumour progression caused by genetic and epigenetic alterations in key regulatory molecules. It is, therefore, crucial to improve our understanding of the regulation of genes controlling the metastatic process to identify predictive biomarkers and to develop more effective therapies to treat advanced disease. The study of epigenetic mechanisms of gene regulation offers a novel approach for innovative diagnosis and treatment of cancer patients. Recent discoveries provide compelling evidence that the methylation landscape (changes in both DNA methylation and histone post‐translational modifications) is profoundly altered in cancer cells and contributes to the altered expression of genes regulating tumour phenotypes. However, the impact of methylation events specifically on the advanced metastatic process is poorly understood compared with the initial oncogenic events. Moreover, the characterisation of a large number of histone‐modifying enzymes has revealed their active roles in cancer progression, via the regulation of specific target genes controlling different metastatic phenotypes. Here, we discuss two main methylating events (DNA methylation and histone‐tail methylation) involved in oncogenesis and metastasis formation. The potential reversibility of these molecular events makes them promising biomarkers of metastatic potential and potential therapeutic targets. 相似文献
2.
3.
Laren Narapareddy Derek E. Wildman Don L. Armstrong Amy Weckle Aleeca F. Bell Crystal L. Patil Suzette D. Tardif Corinna N. Ross Julienne N. Rutherford 《American journal of primatology》2020,82(3):e23101
Accumulating evidence suggests that dysregulation of placental DNA methylation (DNAm) is a mechanism linking maternal weight during pregnancy to metabolic programming outcomes. The common marmoset, Callithrix jaccus, is a platyrrhine primate species that has provided much insight into studies of the primate placenta, maternal condition, and metabolic programming, yet the relationships between maternal weight and placental DNAm are unknown. Here, we report genome-wide DNAm from term marmoset placentas using reduced representation bisulfite sequencing. We identified 74 genes whose DNAm pattern is associated with maternal weight during gestation. These genes are predominantly involved in energy metabolism and homeostasis, including the regulation of glycolytic and lipid metabolic processes pathways. 相似文献
4.
Mitochondria are known as the powerhouses of eukaryotic cells; however, they perform many other functions besides oxidative phosphorylation, including Ca2+ homeostasis, lipid metabolism, antiviral response, and apoptosis. Although other hypotheses exist, mitochondria are generally thought as descendants of an α-proteobacteria that adapted to the intracellular environment within an Asgard archaebacteria, which have been studied for decades as an organelle subdued by the eukaryotic cell. Nevertheless, several early electron microscopy observations hinted that some mitochondria establish specific interactions with certain plasma membrane (PM) domains in mammalian cells. Furthermore, recent findings have documented the direct physical and functional interaction of mitochondria and the PM, the organization of distinct complexes, and their communication through vesicular means. In yeast, some molecular players mediating this interaction have been elucidated, but only a few works have studied this interaction in mammalian cells. In addition, mitochondria can be translocated among cells through tunneling nanotubes or by other mechanisms, and free, intact, functional mitochondria have been reported in the blood plasma. Together, these findings challenge the conception of mitochondria as organelles subdued by the eukaryotic cell. This review discusses the evidence of the mitochondria interaction with the PM that has been long disregarded despite its importance in cell function, pathogenesis, and evolution. It also proposes a scheme of mitochondria–PM interactions with the intent to promote research and knowledge of this emerging pathway that promises to shift the current paradigms of cell biology. 相似文献
5.
6.
The interplay between host cellular and gut microbial metabolism in NAFLD development and prevention
Metabolism regulation centred on insulin resistance is increasingly important in nonalcoholic fatty liver disease (NAFLD). This review focuses on the interactions between the host cellular and gut microbial metabolism during the development of NAFLD. The cellular metabolism of essential nutrients, such as glucose, lipids and amino acids, is reconstructed with inflammation, immune mechanisms and oxidative stress, and these alterations modify the intestinal, hepatic and systemic environments, and regulate the composition and activity of gut microbes. Microbial metabolites, such as short-chain fatty acids, secondary bile acids, protein fermentation products, choline and ethanol and bacterial toxicants, such as lipopolysaccharides, peptidoglycans and bacterial DNA, play vital roles in NAFLD. The microbe–metabolite relationship is crucial for the modulation of intestinal microbial composition and metabolic activity. The intestinal microbiota and their metabolites participate in epithelial cell metabolism via a series of cell receptors and signalling pathways and remodel the metabolism of various cells in the liver via the gut–liver axis. Microbial metabolic manipulation is a promising strategy for NAFLD prevention, but larger-sampled clinical trials are required for future application. 相似文献
7.
The metabolic sensor AKIN10 modulates the Arabidopsis circadian clock in a light‐dependent manner 下载免费PDF全文
Amanda M. Davis Shen‐xiu Du Kenneth W. Berendzen Csaba Koncz Zhaojun Ding Cuiling Li Seth J. Davis 《Plant, cell & environment》2017,40(7):997-1008
Plants generate rhythmic metabolism during the repetitive day/night cycle. The circadian clock produces internal biological rhythms to synchronize numerous metabolic processes such that they occur at the required time of day. Metabolism conversely influences clock function by controlling circadian period and phase and the expression of core‐clock genes. Here, we show that AKIN10, a catalytic subunit of the evolutionarily conserved key energy sensor sucrose non‐fermenting 1 (Snf1)‐related kinase 1 (SnRK1) complex, plays an important role in the circadian clock. Elevated AKIN10 expression led to delayed peak expression of the circadian clock evening‐element GIGANTEA (GI) under diurnal conditions. Moreover, it lengthened clock period specifically under light conditions. Genetic analysis showed that the clock regulator TIME FOR COFFEE (TIC) is required for this effect of AKIN10. Taken together, we propose that AKIN10 conditionally works in a circadian clock input pathway to the circadian oscillator. 相似文献
8.
The tumor cell has a very distinctive metabolism. It acts as a metabolic trap for host nutrients thus taking vital compounds for the metabolism of the host. Depending on the particular tumor growing pattern, cancer cells use preferentially glucose or amino acids for their energetic or biosynthetic needs. Lipids, fatty acids in particular, can also be taken up by the tumor cell. In addition, it can also release some compounds into the host circulation which are not normally produced by the original cell before neoplastic transformation. Some of these compounds affect the metabolism of the host in an unfavorable way since they can oppose the host's metabolic responses, which sustain homeostasis. The final product is that the metabolic machinery of these cells allows them to grow continuously in an uncontrolled manner. The consequences of tumor invasion on the host's metabolism are varied. They have, however, one thing in common: the reduction of the metabolic efficiency of the host. Muscular protein depletion, increased gluconeogenesis, uncoupling of oxidative phosphorylation constitute the main metabolic responses of the host as a result of tumor invasion. The net result of all these metabolic changes is profound energy imbalance which normally ends with cachexia and, eventually, death. 相似文献
9.
Protein arginine methyltransferase 1 (PRMT1), a type-I arginine methyltransferase, has been implicated in diverse cellular events. We have focused on the role of PRMT1 in gliomagenesis. In this study, we showed that PRMT1 expression was up-regulated in glioma tissues and cell lines compared with normal brain tissues. The knock-down of PRMT1 resulted in an arrest in the G1-S phase of the cell cycle, proliferation inhibition and apoptosis induction in four glioma cell lines (T98G, U87MG, U251, and A172). Moreover, an in vivo study confirmed that the tumor growth in nude mouse xenografts was significantly decreased in the RNAi-PRMT1 group. Additionally, we found that the level of the asymmetric dimethylated modification of H4R3, a substrate of PRMT1, was higher in glioma cells than in normal brain tissues and decreased after PRMT1 knock-down. Our data suggest a potential role for PRMT1 as a novel biomarker of and therapeutic target in gliomas. [BMB Reports 2012; 45(8): 470-475]. 相似文献
10.
11.
12.
13.
The essential function of CARD9 in diet‐induced inflammation and metabolic disorders in mice 下载免费PDF全文
Xuejiao Zeng Xihao Du Jia Zhang Shuo Jiang Jie Liu Yuquan Xie Wei Shan Guanglong He Qinghua Sun Jinzhuo Zhao 《Journal of cellular and molecular medicine》2018,22(6):2993-3004
Inflammation and metabolic disorder are common pathophysiological conditions, which play a vital role in the development of obesity and type 2 diabetes. The purpose of this study was to explore the effects of caspase recruitment domain (CARD) 9 in the high fat diet (HFD)‐treated mice and attempt to find a molecular therapeutic target for obesity development and treatment. Sixteen male CARD9?/? and corresponding male WT mice were fed with normal diet or high fat diet, respectively, for 12 weeks. Glucose tolerance, insulin resistance, oxygen consumption and heat production of the mice were detected. The CARD9/MAPK pathway‐related gene and protein were determined in insulin‐responsive organs using Western blotting and quantitative PCR. The results showed that HFD‐induced insulin resistance and impairment of glucose tolerance were more severe in WT mice than that in the CARD9?/? mice. CARD9 absence significantly modified O2 consumption, CO2 production and heat production. CARD9?/? mice displayed the lower expression of p38 MAPK, JNK and ERK when compared to the WT mice in both HFD‐ and ND‐treated groups. HFD induced the increase of p38 MAPK, JNK and ERK in WT mice but not in the CARD9?/? mice. The results indicated that CARD9 absence could be a vital protective factor in diet‐induced obesity via the CARD9/MAPK pathway, which may provide new insights into the development of gene knockout to improving diet‐induced obesity and metabolism disorder. 相似文献
14.
Dr F Valle E Muñoz E Ponce N Flores F Bolivar 《Journal of industrial microbiology & biotechnology》1996,17(5-6):458-462
The phosphoenolpyruvate (PEP) node represents a metabolic crossroad where carbon is distributed into several metabolic pathways. This node is specially important for the industrial production of several metabolites. Depending on the organism and its habitat, the enzymes that utilize PEP are regulated by different effectors, and each branch of the node is important in PEP consumption. In this review we will focus our attention on the metabolic diversity of this node. 相似文献
15.
16.
17.
18.
Osteoarthritis (OA) is one of the most prevalent forms of joint disorder, associated with a tremendous socioeconomic burden worldwide. Various non-genetic and lifestyle-related factors such as aging and obesity have been recognized as major risk factors for OA, underscoring the potential role for epigenetic regulation in the pathogenesis of the disease. OA-associated epigenetic aberrations have been noted at the level of DNA methylation and histone modification in chondrocytes. These epigenetic regulations are implicated in driving an imbalance between the expression of catabolic and anabolic factors, leading eventually to osteoarthritic cartilage destruction. Cellular senescence and metabolic abnormalities driven by OA-associated risk factors appear to accompany epigenetic drifts in chondrocytes. Notably, molecular events associated with metabolic disorders influence epigenetic regulation in chondrocytes, supporting the notion that OA is a metabolic disease. Here, we review accumulating evidence supporting a role for epigenetics in the regulation of cartilage homeostasis and OA pathogenesis. 相似文献
19.
20.
Modelling central metabolic fluxes by constraint‐based optimization reveals metabolic reprogramming of developing Solanum lycopersicum (tomato) fruit 下载免费PDF全文
Sophie Colombié Christine Nazaret Camille Bénard Benoît Biais Virginie Mengin Marion Solé Laëtitia Fouillen Martine Dieuaide‐Noubhani Jean‐Pierre Mazat Bertrand Beauvoit Yves Gibon 《The Plant journal : for cell and molecular biology》2015,81(1):24-39
Modelling of metabolic networks is a powerful tool to analyse the behaviour of developing plant organs, including fruits. Guided by our current understanding of heterotrophic metabolism of plant cells, a medium‐scale stoichiometric model, including the balance of co–factors and energy, was constructed in order to describe metabolic shifts that occur through the nine sequential stages of Solanum lycopersicum (tomato) fruit development. The measured concentrations of the main biomass components and the accumulated metabolites in the pericarp, determined at each stage, were fitted in order to calculate, by derivation, the corresponding external fluxes. They were used as constraints to solve the model by minimizing the internal fluxes. The distribution of the calculated fluxes of central metabolism were then analysed and compared with known metabolic behaviours. For instance, the partition of the main metabolic pathways (glycolysis, pentose phosphate pathway, etc.) was relevant throughout fruit development. We also predicted a valid import of carbon and nitrogen by the fruit, as well as a consistent CO2 release. Interestingly, the energetic balance indicates that excess ATP is dissipated just before the onset of ripening, supporting the concept of the climacteric crisis. Finally, the apparent contradiction between calculated fluxes with low values compared with measured enzyme capacities suggest a complex reprogramming of the metabolic machinery during fruit development. With a powerful set of experimental data and an accurate definition of the metabolic system, this work provides important insight into the metabolic and physiological requirements of the developing tomato fruits. 相似文献