首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
    
To regenerate, damaged tissue must heal the wound, regrow to the proper size, replace the correct cell types, and return to the normal gene-expression program. However, the mechanisms that temporally and spatially control the activation or repression of important genes during regeneration are not fully understood. To determine the role that chromatin modifiers play in regulating gene expression after tissue damage, we induced ablation in Drosophila melanogaster imaginal wing discs, and screened for chromatin regulators that are required for epithelial tissue regeneration. Here, we show that many of these genes are indeed important for promoting or constraining regeneration. Specifically, the two SWI/SNF chromatin-remodeling complexes play distinct roles in regulating different aspects of regeneration. The PBAP complex regulates regenerative growth and developmental timing, and is required for the expression of JNK signaling targets and the growth promoter Myc. By contrast, the BAP complex ensures correct patterning and cell fate by stabilizing the expression of the posterior gene engrailed. Thus, both SWI/SNF complexes are essential for proper gene expression during tissue regeneration, but they play distinct roles in regulating growth and cell fate.  相似文献   

2.
3.
Marcus Michel 《Fly》2016,10(4):204-209
During animal development, cells with similar function and fate often stay together and sort out from cells with different fates. In Drosophila wing imaginal discs, cells of anterior and posterior fates are separated by a straight compartment boundary. Separation of anterior and posterior cells requires the homeodomain-containing protein Engrailed, which is expressed in posterior cells. Engrailed induces the expression of the short-range signaling molecule Hedgehog in posterior cells and confines Hedgehog signal transduction to anterior cells. Transduction of the Hedgehog signal in anterior cells is required for the separation of anterior and posterior cells. Previous work showed that this separation of cells involves a local increase in mechanical tension at cell junctions along the compartment boundary. However, how mechanical tension was locally increased along the compartment boundary remained unknown. A recent paper now shows that the difference in Hedgehog signal transduction between anterior and posterior cells is necessary and sufficient to increase mechanical tension. The local increase in mechanical tension biases junctional rearrangements during cell intercalations to maintain the straight shape of the compartment boundary. These data highlight how developmental signals can generate patterns of mechanical tension important for tissue organization.  相似文献   

4.
Cell death and its effect on wing size have been described in some wing mutants of Drosophila hydei. Dead cells in the imaginal discs were localized by Nile-bule and acridine-orange staining. Various Notch (N) alleles, the mutation Costal-nick (Cnk) and the compound N/Cnk show characteristic patterns of cell death in the imaginal wing disc. Some but not all of the structural features of the adult wing can be related to the site of cell death during larval stages. In NAx types, extensive cell death is followed by regenerative growth, invalidating a simple relation between size of the disk and size of the wing. In Nts/Cnk cell death and wing morphology depend on the breeding temperature. From temperature experiments we conclude that cell death starts between day 4 and 5 after egg laying and can be induced by a shift to the restrictive temperature during the critical phase. Patterns of wing incisions and cell death in Nts/Cnk genotypes seem not to be delimited by any of the known compartment boundaries.  相似文献   

5.
The insect moulting hormone, 20-hydroxyecdysone, induces the synthesis of two groups of proteins in the imaginal wing discs ofDrosophila melanogaster. The early induced group appears about 4 h after hormone treatment, the late induced group appears about 12 h after treatment. Studies using -amanitin to inhibit mRNA synthesis during the period of hormonal treatment showed that the induction of the late proteins is dependent on mRNA synthesis and possibly the synthesis of the early proteins.  相似文献   

6.
Dissociation of imaginal disc cells has been carried out previously to enable flow cytometry and cell sorting to analyze cell cycle progression, cell size, gene expression, and other aspects of imaginal tissues. However, the lengthy dissociation protocols employed may alter gene expression, cell behavior and overall viability. Here we describe a new rapid and gentle method of dissociating the cells of wing imaginal discs that significantly enhances cell viability and reduces the likelihood of gene expression changes. Furthermore, this method is scalable, enabling collection of large amounts of sample for high-throughput experiments without the need for data-distorting amplifications.  相似文献   

7.
Gain-of-function screens in Drosophila are an effective method with which to identify genes that affect the development of particular structures or cell types. It has been found that a fraction of 2–10% of the genes tested, depending on the particularities of the screen, results in a discernible phenotype when overexpressed. However, it is not clear to what extent a gain-of-function phenotype generated by overexpression is informative about the normal function of the gene. Thus, very few reports attempt to correlate the loss- and overexpression phenotype for collections of genes identified in gain-of-function screens. In this work we use RNA interference and in situ hybridization to annotate a collection of 123 P-GS insertions that in combination with different Gal4 drivers affect the size and/or patterning of the wing. We identify the gene causing the overexpression phenotype by expressing, in a background of overexpression, RNA interference for the genes affected by each P-GS insertion. Then, we compare the loss and gain-of-function phenotypes obtained for each gene and relate them to its expression pattern in the wing disc. We find that 52% of genes identified by their overexpression phenotype are required during normal development. However, only in 9% of the cases analyzed was there some complementarity between the gain- and loss-of-function phenotype, suggesting that, in general, the overexpression phenotypes would not be indicative of the normal requirements of the gene.  相似文献   

8.
Reporter gene activity in enhancer trap lines is often implicitly assumed to mirror quite faithfully the endogenous expression of the “trapped” gene, even though there are numerous examples of enhancer trap infidelity. optomotor-blind (omb) is a 160 kb gene in which 16 independent P-element enhancer trap insertions of three different types have been mapped in a range of more than 60 kb. We have determined the expression pattern of these elements in wing, eye-antennal and leg imaginal discs as well as in the pupal tergites. We noted that one pGawB insertion (ombP4) selectively failed to report parts of the omb pattern even though the missing pattern elements were apparent in all other 15 lines. We ruled out that ombP4 was defective in the Gal4 promoter region or had inactivated genomic enhancers in the integration process. We propose that the Gal4 reporter gene in pGawB may be sensitive to orientation or promoter proximity effects.  相似文献   

9.
刘素宁  王丹  沈杰 《昆虫知识》2013,(6):1489-1498
果蝇翅芽是研究细胞形貌发生的模式系统。在果蝇翅芽的发育过程中,器官成形素由浓度高的区域(成形素表达细胞)向浓度低的区域(接收细胞)移动,形成动态的浓度梯度。器官成形素信号通路的激活调控翅芽细胞的形貌发生、存活、生长和分化。目前已鉴定的在翅芽细胞表达的器官成形素包括Hedgehog(Hh),Decapentaplegic(Dpp)和Wingless(Wg)。结合国际最新研究进展,本文综述了3种器官成形素在翅芽细胞形貌发生过程中的重要作用,讨论了细胞形貌发生的分子机制。  相似文献   

10.
本文采用D.T.Suzuki的方法,研究了黑果蝇Drosophila virilis Sturt dlts品系的温度敏感时期和致死时期的相互关系。选择了31℃为限制温度,25℃为许可温度。对于成虫盘缺损的研究用了12个小时为一个脉冲或24个小时为一个脉冲的热处理,用扫描电镜技术辅助对成虫形态缺损的研究。对于成虫盘缺失和重复的关系主要在48小时为一个脉冲的热处理盘中进行,对dlts基因的表达采用了遗传嵌合性的研究,其结果如下:1两个不连续的温度敏感时态对致死的影响是在第1龄幼虫、第2龄幼虫、第3龄幼虫和进入蛹期后的10个小时。温度敏感时态和致死时态并不一致,而是先于致死时态几个小时。2温度敏感时态对成虫形态的影响是:触角的重复和复眼的缺失发生在第2龄和第3龄幼虫期。足关节融合及跗节和腿节的缩短发生在第3龄幼虫期,翅脉硬化主要发生在第3龄幼虫期即将结束进入前蛹期的这段时间。第3龄幼虫期是成虫盘发生缺陷比较集中的时期,可以明显见到足、复眼、翅和刚毛的缺陷,同源异型突变体也在这个时期发生。同源突变体的变化主要是足、触角片段及刚毛和触角片段的相互转移。3每一个成虫盘缺陷部有自己明显的特征,根据它们成虫盘的形态缺陷和热处理的时间性,所有的成虫盘缺陷变化都可以分为这样三类:缺失,重复,缺失和重复并存。4遗传镶嵌测试表明:dlts基因是自主表达的,且具有一定的时间、环境和组织的特殊性。  相似文献   

11.
本文采用D.T.Suzuki的方法,研究了黑果蝇Drosophila virilis Sturt dlts品系的温度敏感时期和致死时期的相互关系.选择了31℃为限制温度,25℃为许可温度.对于成虫盘缺损的研究用了12个小时为一个脉冲或24个小时为一个脉冲的热处理,用扫描电镜技术辅助对成虫形态缺损的研究.对于成虫盘缺失和重复的关系主要在48小时为一个脉冲的热处理盘中进行,对dlts基因的表达采用了遗传嵌合性的研究,其结果如下:1. 两个不连续的温度敏感时态对致死的影响是在第1龄幼虫、第2龄幼虫、第3龄幼虫和进入蛹期后的10个小时.温度敏感时态和致死时态并不一致,而是先于致死时态几个小时.2. 温度敏感时态对成虫形态的影响是:触角的重复和复眼的缺失发生在第2龄和第3龄幼虫期.足关节融合及跗节和腿节的缩短发生在第3龄幼虫期,翅脉硬化主要发生在第3龄幼虫期即将结束进入前蛹期的这段时间.第3龄幼虫期是成虫盘发生缺陷比较集中的时期,可以明显见到足、复眼、翅和刚毛的缺陷,同源异型突变体也在这个时期发生.同源突变体的变化主要是足、触角片段及刚毛和触角片段的相互转移.3. 每一个成虫盘缺陷部有自己明显的特征,根据它们成虫盘的形态缺陷和热处理的时间性,所有的成虫盘缺陷变化都可以分为这样三类:缺失,重复,缺失和重复并存.4. 遗传镶嵌测试表明:dlts基因是自主表达的,且具有一定的时间、环境和组织的特殊性.  相似文献   

12.
    
Regeneration is a complex process that requires a coordinated genetic response to tissue loss. Signals from dying cells are crucial to this process and are best understood in the context of regeneration following programmed cell death, like apoptosis. Conversely, regeneration following unregulated forms of death, such as necrosis, have yet to be fully explored. Here, we have developed a method to investigate regeneration following necrosis using the Drosophila wing imaginal disc. We show that necrosis stimulates regeneration at an equivalent level to that of apoptosis-mediated cell death and activates a similar response at the wound edge involving localized JNK signaling. Unexpectedly, however, necrosis also results in significant apoptosis far from the site of ablation, which we have termed necrosis-induced apoptosis (NiA). This apoptosis occurs independent of changes at the wound edge and importantly does not rely on JNK signaling. Furthermore, we find that blocking NiA limits proliferation and subsequently inhibits regeneration, suggesting that tissues damaged by necrosis can activate programmed cell death at a distance from the injury to promote regeneration.  相似文献   

13.
14.
    
Exploring the mechanisms involved in tissue regeneration is one of the main challenges in biology and biomedicine. Multiple examples of tissue regeneration exist across the animal phyla, ranging from the recovery of the whole animal (e.g. flatworms) to the limited capability of the human liver. Studies performed in the 1960s showed that Drosophila imaginal discs are able to regenerate. This property, together with multiple genetic tools available, make fly an excellent model for the study of the regenerative process. Here we present an overview of the use of Drosophila for the study of regeneration and describe major recent advances in the understanding of this process. Current studies in Drosophila have unraveled some of the pathways and factors needed for a tissue to regenerate. Many observations point to the reuse of developmental programs and genetic reprogramming to drive regeneration. We discuss how this reprogramming could be orchestrated by the initial activity of the JNK pathway.  相似文献   

15.
    
Many animals display a capacity to regenerate tissues or even a complete body. One of the main goals of regenerative biology is to identify the genes and genetic networks necessary for this process. Drosophila offers an ideal model system for such studies. The wide range of genetic and genomic approaches available for use in flies has helped in initiating the deciphering of the mechanisms underlying regeneration, and the results may be applicable to other organisms, including mammals. Moreover, most models of regeneration require experimental manipulation, whereas in Drosophila discrete domains can be ablated by genetically induced methods. Here, we present a summary of current research into imaginal disc regeneration and discuss the power of this tissue as a tool for understanding the genetics of regeneration.  相似文献   

16.
This study was undertaken to evaluate the range of 20-hydroxyecdysone (20HE) concentrations which induce cell proliferation and imaginal differentiation in lepidopteran wing discs in vitro . Wing discs were cultured in medium containing various doses of 20HE. During imaginal differentiation in vitro , wing discs were observed histologically and the number of mitosis was counted every day. Wing discs differentiated adult features in medium containing 0.02–0.2 μg/mL 20HE, and these doses also increased the number of mitosis in disc cells. Wing discs developed the same in vitro as they do in vivo . The concentration of 20HE over 0.2 μg/mL inhibited both mitosis and imaginal differentiation. Cell proliferation, cuticle deposition and tissue elongation were successively observed in vitro the same as observed in vivo . These results suggest that a moderate concentration of ecdysteroid can induce cell proliferation followed by imaginal differentiation.  相似文献   

17.
The Drosophila eye is a powerful model system for studying areas such as neurogenesis, signal transduction and neurodegeneration. Many of the discoveries made using this system have taken advantage of the spatiotemporal nature of photoreceptor differentiation in the developing eye imaginal disc. To use this system it is first necessary for the researcher to learn to identify and dissect the eye disc. We describe a novel RFP reporter to aid in the identification of the eye disc and the visualization of specific cell types in the developing eye. We detail a methodology for dissection of the eye imaginal disc from third instar larvae and describe how the eye-RFP reporter can aid in this dissection. This eye-RFP reporter is only expressed in the eye and can be visualized using fluorescence microscopy either in live tissue or after fixation without the need for signal amplification. We also show how this reporter can be used to identify specific cells types within the eye disc. This protocol and the use of the eye-RFP reporter will aid researchers using the Drosophila eye to address fundamentally important biological questions.  相似文献   

18.
    
Soshiro Kashio 《Fly》2017,11(1):27-36
Living organisms experience tissue damage from both, the surrounding environment and from inside their bodies. Tissue repair/regeneration is triggered by local tissue injury to restore an injured, or lost, part of the body. Tissue damage results in a series of responses, not only locally but also systemically in distant tissues. In our recent publication, we established a “dual system” that induces spatiotemporal tissue damage simultaneously with gene manipulation in surrounding tissues. With this system, we demonstrated that appropriate regulation of methionine metabolism in the fat body is required for tissue repair in Drosophila wing discs, thus highlighting the importance of systemic damage response (SDR) in tissue repair. This “Extra View” aims to discuss our recent reports that propose methionine metabolism to be an essential part of SDR, together with related topics in several model organisms.  相似文献   

19.
Spatial gradients of Hedgehog signalling play a central role in many patterning events during animal development, regulating cell fate determination and tissue growth in a variety of tissues and developmental stages. Experimental evidence suggests that many of the proteins responsible for regulating Hedgehog signalling and transport are themselves targets of Hedgehog signalling, leading to multiple levels of feedback within the system. We use mathematical modelling to analyse how these overlapping feedbacks combine to regulate patterning and potentially enhance robustness in the Drosophila wing imaginal disc. Our results predict that the regulation of Hedgehog transport and stability by glypicans, as well as multiple overlapping feedbacks in the Hedgehog response network, can combine to enhance the robustness of positional specification against variability in Hedgehog levels. We also discuss potential trade-offs between robustness and additional features of the Hedgehog gradient, such as signalling range and size regulation.  相似文献   

20.
欧俊  郑思春  冯启理  刘琳 《昆虫学报》2013,56(8):917-924
翅原基发育分化与昆虫的个体发育紧密联系, 对昆虫翅发育的研究有助于阐述昆虫的发育过程。另外, 翅的形成是一些农林害虫泛滥的主要原因之一, 研究翅发育分化有助于我们从翅发育的角度控制农林害虫。目前, 翅发育分化在果蝇Drosophila中研究已较为深入详细。果蝇翅发育分化主要包括4个阶段: 翅原基(wing disc)的确定, 前-后(antero-posterior, A-P)和背-腹(dorso-ventral, D-V)组织中心(organizing center)的建立, 翅区(wing region)的确定, 以及翅区的进一步分化。具有homeobox序列的基因(homeobox 基因)如Engrailed (En)、 Apterous (Ap)和Ultrabithorax (Ubx), 分泌蛋白如Wnt家族成员Wingless (Wg)及TGF-β超家族成员Decapentaplegic (Dpp)和Hedgehog (Hh), 以及翅原基特有的核蛋白编码基因Vestigial (Vg), 共同调控了翅原基的正常发育分化。本文综述了果蝇翅原基发育分化的过程及分子机理方面的研究发现, 为翅原基的研究提供了参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号