首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
SteD is a transmembrane effector of the Salmonella SPI-2 type III secretion system that inhibits T cell activation by reducing the amounts of at least three proteins –major histocompatibility complex II (MHCII), CD86 and CD97 –from the surface of antigen-presenting cells. SteD specifically localises at the trans-Golgi network (TGN) and MHCII compartments; however, the targeting, membrane integration and trafficking of SteD are not understood. Using systematic mutagenesis, we identify distinct regions of SteD that are required for these processes. We show that SteD integrates into membranes of the ER/Golgi through a two-step mechanism of membrane recruitment from the cytoplasm followed by integration. SteD then migrates to and accumulates within the TGN. From here it hijacks the host adaptor protein (AP)1-mediated trafficking pathway from the TGN to MHCII compartments. AP1 binding and post-TGN trafficking require a short sequence in the N-terminal cytoplasmic tail of SteD that resembles the AP1-interacting dileucine sorting signal, but in inverted orientation, suggesting convergent evolution.  相似文献   

2.
Neospora caninum is an intracellular protozoan pathogen that causes abortion in cattle. We studied how the interaction between murine conventional dendritic cells or macrophages and N. caninum influences the generation of cell-mediated immunity against the parasite. We first explored the invasion and survival ability of N. caninum in dendritic cells and macrophages. We observed that protozoa rapidly invaded and proliferated into these two cell populations. We then investigated how Neospora-exposed macrophages or dendritic cells distinguish between viable and non-viable (heat-killed tachyzoites and antigenic extract) parasites. Viable tachyzoites and antigenic extract, but not killed parasites, altered the phenotype of immature dendritic cells. Dendritic cells infected with viable parasites down-regulated the expression of MHC-II, CD40, CD80 and CD86 whereas dendritic cells exposed to N. caninum antigenic extract up-regulated the expression of MHC-II and CD40 and down-regulated CD80 and CD86 expression. Moreover, only viable tachyzoites and antigenic extract induced IL-12 synthesis by dendritic cells. MHC-II expression was up-regulated and CD86 expression was down-regulated at the surface of macrophages, regardless of the parasitic form was encountered. However, IL-12 secretion by macrophages was only observed under conditions using viable and heat-killed parasite. We then analysed how macrophages and dendritic cells were involved in inducing T-cell responses. T lymphocyte IFN-γ-secretion in correlation with IL-12 production occurred after interactions between T cells and dendritic cells exposed to viable tachyzoites or antigenic extract. By contrast, for macrophages IFN-γ production was IL-12-independent and only occurred after interactions between T cells and macrophages exposed to antigenic extract. Thus, N. caninum-induced activation of murine dendritic cells, but not that of macrophages, was associated with T cell IFN-γ production after IL-12 secretion.  相似文献   

3.
4.
This study investigates the effects of hydrogen peroxide, a potent oxygen free radical donor, on the phenotype and function of dendritic cells differentiated from peripheral blood precursors. We report that hydrogen peroxide induces an up-regulation of several dendritic cell surface markers involved in interaction with T cells, including MHC Class II molecules (DQ and DR) and the co-stimulatory molecules CD40 and CD86. Moreover we have observed that H2O2-treated dendritic cells are more efficient in promoting T cell proliferation than normal dendritic cells and that this enhancement can be blocked using the free radical scavenger agent N-acetylcysteine. Oxygen free radicals are a common by-product of inflammation, and our results suggest they may play an important role in activation of sentinel dendritic cells, linking tissue damage to the initiation of an adaptive immune response.  相似文献   

5.
6.
Polysialic acid (PSA) is a unique linear homopolymer of alpha2,8-linked sialic acid that has been identified as a posttranslational modification on only five mammalian proteins. Studied predominantly on neural cell adhesion molecule (NCAM) during development of the vertebrate nervous system, PSA modulates cell interactions mediated by NCAM and other adhesion molecules. An isoform of NCAM (CD56) on natural killer (NK) cells is the only protein known to be polysialylated in cells of the immune system, yet the function of PSA in NK cells remains unclear. We show here that neuropilin-2 (NRP-2), a receptor for the semaphorin and vascular endothelial growth factor families in neurons and endothelial cells, respectively, is expressed on the surface of human dendritic cells and is polysialylated. Expression of NRP-2 is up-regulated during dendritic cell maturation, coincident with increased expression of ST8Sia IV, one of the key enzymes of PSA biosynthesis, and with the appearance of PSA on the cell surface. PSA on NRP-2 is resistant to digestion with peptide N-glycosidase F but is sensitive to release under alkaline conditions, suggesting that PSA chains are added to O-linked glycans of NRP-2. Removal of polysialic acid from the surface of dendritic cells or binding of NRP-2 with specific IgG promoted dendritic cell-induced activation and proliferation of T lymphocytes. Thus, this newly recognized polysialylated protein on the surface of dendritic cells influences dendritic cell-T lymphocyte interactions through one or more of its distinct extracellular domains.  相似文献   

7.
Activation of naive CD4 T cells by dendritic cells requires the sequential interaction of many TCR molecules with peptide-class II complexes of the appropriate specificity. Such interaction results in morphological transformation of class II MHC-containing endosomal compartments. In this study, we analyze the requirements for long tubular endosomal structures that polarize toward T cell contact sites using dendritic cells from I-A(b) class II -enhanced green fluorescent protein knock-in mice and I-A(b)-restricted CD4 T cells specific for OVA. Clustering of membrane proteins and ligation of T cell adhesion molecules LFA-1 and CD2 are involved in induction of endosomal tubulation. Activation of T cells increases their ability to induce class II-enhanced green fluorescent protein-positive tubules in dendritic cells, in part through up-regulation of CD40 ligand. Remarkably, and in stark contrast with the result obtained with dendritic cells loaded with intact OVA, OVA peptide added to dendritic cells failed to evoke T cell-polarized endosomal tubulation even though both conditions allowed T cell stimulation. These results suggest the existence of microdomains on the membrane of dendritic cells that allow Ag-specific T cells to evoke tubulation in the dendritic cell.  相似文献   

8.
Activation of CD4(+) T cells by APCs occurs by multiple Ag recognition events including the exchange of costimulatory signals and cytokines. Additionally, the T cells acquire APC-derived surface molecules. Herein, we describe for the first time the transfer of human and murine T cell surface receptors to APCs after Ag-specific interaction. This transfer occurs in two qualitatively different phases. The first group of molecules (e.g., CD2) derived from the T cell surface was transferred rapidly after 2 h of interaction, was strongly bound on the DC surface (acid wash-resistant), was strictly dependent on dendritic cell-T cell contact, and transferred independently of T cell activation. The second group, including the CD3/TCR complex, CD27, and OX40, was of intracellular origin, transferred later after 10-16 h in a cell-cell contact-independent fashion, was noncovalently bound, and was strictly dependent on Ag-specific T cell activation. Functionally, murine dendritic cells that received TCR molecules from OVA-specific CD4(+) T cells after Ag-specific interaction were less efficient in priming naive CD4(+) T cells of the same specificity without losing their ability for CD8(+) T cell stimulation, indicating that the transferred TCR molecules mask the Ag-bearing MHC II molecules, thereby reducing their accessibility to following Ag-specific CD4(+) T cells. While the first group of transferred T cell surface molecules might facilitate the detachment of the CD4(+) T cell from the dendritic cell during the early scanning phases, the second group could play an important immunomodulatory role in intraclonal competition of T cells for APC access, making the physical presence of CD4(+) T cells unnecessary.  相似文献   

9.
Autophagy plays important roles in metabolism, differentiation, and survival in T cells. TNFAIP3/A20 is a ubiquitin-editing enzyme that is thought to be a negative regulator of autophagy in cell lines. However, the role of TNFAIP3 in autophagy remains unclear. To determine whether TNFAIP3 regulates autophagy in CD4 T cells, we first analyzed Tnfaip3-deficient naïve CD4 T cells in vitro. We demonstrated that Tnfaip3-deficient CD4 T cells exhibited reduced MAP1LC3/LC3 (microtubule-associated protein 1 light chain 3) puncta formation, increased mitochondrial content, and exaggerated reactive oxygen species (ROS) production. These results indicate that TNFAIP3 promotes autophagy after T cell receptor (TCR) stimulation in CD4 T cells. We then investigated the mechanism by which TNFAIP3 promotes autophagy signaling. We found that TNFAIP3 bound to the MTOR (mechanistic target of rapamycin) complex and that Tnfaip3-deficient cells displayed enhanced ubiquitination of the MTOR complex and MTOR activity. To confirm the effects of enhanced MTOR activity in Tnfaip3-deficient cells, we analyzed cell survival following treatment with Torin1, an MTOR inhibitor. Tnfaip3-deficient CD4 T cells exhibited fewer cell numbers than the control cells in vitro and in vivo. In addition, the impaired survival of Tnfaip3-deficient cells was ameliorated with Torin1 treatment in vitro and in vivo. The effect of Torin1 was abolished by Atg5 deficiency. Thus, enhanced MTOR activity regulates the survival of Tnfaip3-deficient CD4 T cells. Taken together, our findings illustrate that TNFAIP3 restricts MTOR signaling and promotes autophagy, providing new insight into the manner in which MTOR and autophagy regulate survival in CD4 T cells.  相似文献   

10.
In situ staining techniques were used to visualize physical interactions between dendritic cell subsets and naive Ag-specific CD4 T cells in the lymph node. Before injection of Ag, CD8(+) dendritic cells and naive OVA-specific CD4 T cells were uniformly distributed throughout the T cell-rich paracortex, whereas CD11b(+) dendritic cells were located mainly in the outer edges of the paracortex near the B cell-rich follicles. Many OVA-specific CD4 T cells were in contact with CD8(+) dendritic cells in the absence of OVA. Within 24 h after s.c. injection of soluble OVA, the OVA-specific CD4 T cells redistributed to the outer paracortex and interacted with CD11b(+), but not CD8(+) dendritic cells. This behavior correlated with the uptake of OVA and the presence of peptide-MHC complexes on the surface of CD11b(+) dendritic cells, and subsequent IL-2 production by the Ag-specific CD4 T cells. These results are consistent with the possibility that CD11b(+) dendritic cells play a central role in the activation of CD4 T cells in response to s.c. Ag.  相似文献   

11.
Osteoclast Inhibitory Lectin-related Protein 2 (OCILRP2) is a typical type II transmembrane protein and belongs to C-type lectin-related protein family. It is preferentially expressed in dendritic cells (DC), B lymphocytes, and activated T lymphocytes. Upon binding to its ligand, OCILRP2 can promote CD28-mediated co-stimulation and enhance T cell activation. However, the role of OCILRP2 in DC development and activation is unclear. In this report, we present evidence that recombinant protein OCILRP2-Fc inhibits the generation and LPS-induced maturation of murine bone marrow-derived dendritic cells (BMDCs) by downregulating the expression of CD11c, MHC-II, and co-stimulators CD80 and CD86. OCILRP2-Fc also reduces the capacity of BMDCs to take up antigens, activates T cells, and secret inflammatory cytokines such as IL-6, IL-12, and TNF-α. Additionally, we show that OCILRP2-Fc may cause the aforementioned effects through inhibiting NF-κB activation. Therefore, OCILRP2 is a new regulator of DC maturation and differentiation following TLR4 activation.  相似文献   

12.
Tumors evade immune surveillance despite the frequent expression of tumor-associated Ags (TAA). Tumor cells escape recognition by CD8(+) T cells through several mechanisms, including down-regulation of MHC class I molecules and associated Ag-processing machinery. However, although it is well accepted that optimal anti-tumor immune responses require tumor-reactive CD4(+) T cells, few studies have addressed how tumor cells evade CD4(+) T cell recognition. In this study, we show that a common TAA, GA733-2, and its murine orthologue, mouse epithelial glycoprotein (mEGP), function in blocking MHC class II-restricted Ag presentation by dendritic cells. GA733-2 is a common TAA that is expressed normally at low levels by some epithelial tissues and a subset of dendritic cells, but at high levels on colon, breast, lung, and some nonepithelial tumors. We show that ectopic expression of mEGP or GA733-2, respectively, in dendritic cells derived from murine bone marrow or human monocytes results in a dose-dependent inability to stimulate proliferation of Ag-specific or alloreactive CD4(+) T cells. Dendritic cells exposed to cell debris from tumors expressing mEGP are similarly compromised. Furthermore, mice immunized with dendritic cells expressing mEGP from a recombinant adenovirus vector exhibited a muted anti-adenovirus immune response. The inhibitory effect of mEGP was not due to down-regulation of functional MHC class II molecules or active suppression of T cells, and did not extend to T cell responses to superantigen. These results demonstrate a novel mechanism by which tumors may evade CD4(+) T cell-dependent immune responses through expression of a TAA.  相似文献   

13.
Accumulating evidence supports the requirement for both tumor-specific CD8(+) and CD4(+) T cell responses for efficient tumor rejection to occur. Because of its expression in different tumor types, the cancer/testis Ag encoded by the synovial sarcoma X breakpoint 2 (SSX-2) gene is among the most relevant candidates for the development of generic cancer vaccines. The immunogenicity of SSX-2 has been previously corroborated by detection of specific humoral and CD8(+) T cell responses in cancer patients. In this study we report identification of the first CD4(+) T cell epitope encoded by SSX-2. The identified epitope mapped to the 19-34 region of the protein and was recognized by CD4(+) T cells from an Ag-expressing melanoma patient in association with HLA-DPB1*0101. The absence of detectable response in healthy donors and other patients suggests that SSX-2-specific CD4(+) T cells in the responder patient had been previously expanded in vivo in response to the autologous tumor. The epitope did not appear to be presented on the surface of tumor cells at levels sufficient to allow direct recognition. In contrast, it was efficiently presented by autologous dendritic cells, supporting the concept that processing by professional APC is the main pathway through which the CD4(+) T cell immunoresponse to tumor Ags occurs in vivo.  相似文献   

14.
Tumor-infiltrating dendritic cells are often ineffective at presenting tumor-derived antigen in vivo, a defect usually ascribed to the suppressive tumor environment. We investigated the effects of depleting CD4+CD25+ “natural” regulatory T cells (Treg) on the frequency, phenotype and function of total dendritic cell populations in B16.OVA tumors and in tumor-draining lymph nodes. Intraperitoneal injection of the anti-CD25 monoclonal antibody PC61 reduced Treg frequency in blood and tumors, but did not affect the frequency of tumor-infiltrating dendritic cells, or their expression of CD40, CD86 and MHCII. Tumor-infiltrating dendritic cells from PC61-treated or untreated mice induced the proliferation of allogeneic T cells in vitro, but could not induce proliferation of OVA-specific OTI and OTII T cells unless specific peptide antigen was added in culture. Some proliferation of naïve, OVA-specific OTI T cells, but not OTII T cells, was observed in the tumor-draining LN of mice carrying B16.OVA tumors, however, this was not improved by PC61 treatment. Experiments using RAG1−/− hosts adoptively transferred with OTI and CD25-depleted OTII cells also failed to show improved OTI and OTII T cell proliferation in vivo compared to C57BL/6 hosts. We conclude that the defective presentation of B16.OVA tumor antigen by tumor-infiltrating dendritic cells and in the tumor-draining lymph node is not due to the presence of “natural” CD4+CD25+ Treg.  相似文献   

15.
16.
Helper T cells, dendritic cells and CTL Immunity   总被引:8,自引:0,他引:8  
In this review, we examine the emerging view that all CTL responses depend on CD4 T-cell help for the generation of efficient memory. We further review the evidence that CD4 and CD8 T cells must recognize antigen on the same dendritic cell, and examine why this corecognition is required. Earlier studies have suggested that CD4 T cells must activate the dendritic cell via CD40 to license it for the capacity to prime CTL immunity. More recently, however, CD40 signalling of the CTL has been reported. Here, we argue that the main reason for corecognition of antigen on the dendritic cell may be related to the time taken to activate and release CD4 and CD8 T cells from their priming dendritic cell. CD4 T cells may only be capable of activating one dendritic cell during the period that CD8 T cells are primed. In this case, corecognition of this same dendritic cell would be essential.  相似文献   

17.
The autophagy proteins (Atg) modulate not only innate but also adaptive immunity against pathogens. We examined the role of dendritic cell Atg5 and Atg7 in the production of IL-2 and IFN-γ by Toxoplasma gondii-reactive CD4+ T cells. T. gondii-reactive mouse CD4+ T cells exhibited unimpaired production of IL-2 and IFN-γ when stimulated with Atg7-deficient mouse dendritic cells that were infected with T. gondii or pulsed with T. gondii lysate antigens. In marked contrast, dendritic cells deficient in Atg5 induced diminished CD4+ T cell production of IL-2 and IFN-γ. This defect was not accompanied by changes in costimulatory ligand expression on dendritic cells or impaired production of IL-12 p70, IL-1β or TNF-α. Knockdown of Irg6a in dendritic cells did not affect CD4+ T cell cytokine production. These results indicate that Atg5 and Atg7 in dendritic cells play differential roles in the modulation of IL-2 and IFN-γ production by T. gondii-reactive CD4+ T cells.  相似文献   

18.
Human B cells and plasmacytoid dendritic cells recognize CpG motifs within microbial DNA via Toll-like receptor 9. Two functionally distinct types of CpG motif containing oligonucleotides (CpG ODN) have been described, CpG-A and CpG-B. In contrast to CpG-B, CpG-A induces high amounts of type I IFN (IFN-alpha and IFN-beta) in plasmacytoid dendritic cells. In the present study, we examined the effects of CpG-A on human primary monocytes. In PBMC stimulated with CpG-A and GM-CSF, monocytes showed excellent survival, increased in size and granularity, and within 3 days developed a dendritic cell-like phenotype that was characterized by down-regulation of CD14, partial up-regulation of CCR7, and an increased surface expression of costimulatory and Ag-presenting molecules. This effect could be inhibited by a combination of blocking Abs to type I IFN, and no such CpG-A-induced changes were observed in purified monocytes. Although IL-12 production by this dendritic cell-like phenotype required additional stimulation with CD40 ligand, this cell type spontaneously up-regulated IL-15 expression. Consistent with the known effect of IL-15 on effector and memory CD8 T cells, the frequency of CCR7(-)/CD45RA(-) CD8 T cells was selectively increased in allogeneic T cell assays. Furthermore, this dendritic cell type was more potent to support both the generation and the IFN-gamma production of autologous influenza matrix peptide-specific memory CD8 T cells as compared with dendritic cells generated in the presence of GM-CSF and IL-4. In conclusion, monocytes exposed to the cytokine milieu provided by CpG-A rapidly develop a dendritic cell-like phenotype that is well equipped to support CD8 T cell responses.  相似文献   

19.
Ex vivo activation and expansion of lymphocytes for adoptive cell therapy has demonstrated great success. To improve safety and therapeutic efficacy, increased antigen specificity and reduced non-specific response of the ex vivo generated immune cells are necessary. Here, using a complete protein-spanning pool of pentadecapeptides of the latent membrane protein 2A (LMP2A) of Epstein-Barr virus (EBV), a weak viral antigen which is associated with EBV lymphoproliferative diseases, we investigated the phenotype and function of immune effector cells generated based on IFN-γ or CD137 activation marker selection and dendritic cell (DC) activation. These ex vivo prepared immune cells exhibited a donor- and antigen-dependent T cell response; the IFN-γ-selected immune cells displayed a donor-related CD4- or CD8-dominant T cell phenotype; however, the CD137-enriched cells showed an increased ratio of CD4 T cells. Importantly, the pentadecapeptide antigens accessed both class II and class I MHC antigen processing machineries and effectively activated EBV-specific CD4 and CD8 T cells. Phenotype and kinetic analyses revealed that the IFN-γ and the CD137 selections enriched more central memory T (Tcm) cells than did the DC-activation approach, and after expansion, the IFN-γ-selected effector cells showed the highest level of antigen-specificity and effector activities. While all three approaches generated immune cells with comparable antigen-specific activities, the IFN-γ selection followed by ex vivo expansion produced high quality and quantity of antigen-specific effector cells. Our studies presented the optimal approach for generating therapeutic immune cells with potential for emergency and routine clinical applications.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号