共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Oka K Oka S Hosokawa R Bringas P Brockhoff HC Nonaka K Chai Y 《Developmental biology》2008,321(2):303-309
Transforming growth factor-β (TGF-β) signaling is crucial for mandible development. During its development, the majority of the mandible is formed through intramembranous ossification whereas the proximal region of the mandible undergoes endochondral ossification. Our previous work has shown that TGF-β signaling is required for the proliferation of cranial neural crest (CNC)-derived ectomesenchyme in the mandibular primordium where intramembranous ossification takes place. Here we show that conditional inactivation of Tgfbr2 in CNC cells results in accelerated osteoprogenitor differentiation and perturbed chondrogenesis in the proximal region of the mandible. Specifically, the appearance of chondrocytes in Tgfbr2fl/fl;Wnt1-Cre mice is delayed and they are smaller in size in the condylar process and completely missing in the angular process. TGF-β signaling controls Sox9 expression in the proximal region, because Sox9 expression is delayed in condylar processes and missing in angular process in Tgfbr2fl/fl;Wnt1-Cre mice. Moreover, exogenous TGF-β can induce Sox9 expression in the mandibular arch. In the angular processes of Tgfbr2fl/fl;Wnt1-Cre mice, osteoblast differentiation is accelerated and Dlx5 expression is elevated. Significantly, deletion of Dlx5 in Tgfbr2fl/fl;Wnt1-Cre mice results in the rescue of cartilage formation in the angular processes. Finally, TGF-β signaling-mediated Scleraxis expression is required for tendonogenesis in the developing skeletal muscle. Thus, CNC-derived cells in the proximal region of mandible have a cell intrinsic requirement for TGF-β signaling. 相似文献
3.
4.
Ying-Hua Li Yong-Nan Xu Zi-Li Lin JeongWoo Kwon Xiang-Shun Cui 《Animal cells and systems.》2016,20(5):253-259
The Arp2/3 complex, which nucleates actin filaments, comprises a stable assembly of seven-protein subunits including two actin-related proteins (Arp2 and Arp3). Previous work showed that Arp2/3 binds to the sides of actin filaments and is concentrated at the leading edges of motile cells. In the present study, we show that the Arp2/3 complex is critical for cytokinesis during early embryonic development in porcine parthenotes. The Arp2/3 complex is concentrated at the cortex of each cell at the 1-, 2-, and 4-cell stages, and at the periphery at the morula stage. The amount of Arp2/3 significantly decreased at the blastocyst stage in parthenogenetically activated porcine embryos. Inhibition of the Arp2/3 complex in the pig embryos by the Arp2/3-specific inhibitor CK666 resulted in abnormal cell division, a decrease in developmental rate and total cell numbers, and an increase in the ratio of trophectoderm cell number to inner cell mass number in blastocyst-stage embryos. In addition, 4-cell stage embryos subjected to CK666 treatment exhibited significantly decreased expression of ZGA genes (Pou5f1, Sox2, and Nanog), suggesting that the Arp2/3 complex plays an important role in early porcine embryo development. Thus, our data demonstrate that the Arp2/3 complex is required for early embryonic development in pigs and appears to regulate the expression of pluripotency genes. 相似文献
5.
Xuesong Wang Rashmi Ray Sven Kratochvil Eleonora Melzi YingCing Lin Sophie Giguere Liling Xu John Warner Diane Cheon Alessia Liguori Bettina Groschel Nicole Phelps Yumiko Adachi Ryan Tingle Lin Wu Shane Crotty Kathrin H Kirsch Usha Nair William R Schief Facundo D Batista 《The EMBO journal》2021,40(2)
B‐cell receptor (BCR) knock‐in (KI) mouse models play an important role in vaccine development and fundamental immunological studies. However, the time required to generate them poses a bottleneck. Here we report a one‐step CRISPR/Cas9 KI methodology to combine the insertion of human germline immunoglobulin heavy and light chains at their endogenous loci in mice. We validate this technology with the rapid generation of three BCR KI lines expressing native human precursors, instead of computationally inferred germline sequences, to HIV broadly neutralizing antibodies. We demonstrate that B cells from these mice are fully functional: upon transfer to congenic, wild type mice at controlled frequencies, such B cells can be primed by eOD‐GT8 60mer, a germline‐targeting immunogen currently in clinical trials, recruited to germinal centers, secrete class‐switched antibodies, undergo somatic hypermutation, and differentiate into memory B cells. KI mice expressing functional human BCRs promise to accelerate the development of vaccines for HIV and other infectious diseases. 相似文献
6.
7.
《Prostaglandins & other lipid mediators》2010,91(3-4):94-97
To explore the potential mechanism of how uterine innervations would affect the uterine mast cell (MC) population and functions during the periimplantation. We herein first examined the consequence of uterine neurectomy on embryo implantation events. We observed that amputation of autonomic nerves innervating the uterus led to on-time implantation failure in rats. Exploiting MC culture and ELISA approaches, we then further analyzed the effect of neurectomy on cellular histamine levels and its release from uterine MCs, to elucidate the relation of the autonomic nerves and local cellular immunity in the uterine during early pregnancy. We observed that disconnection of autonomic nerve innervation significantly increased the population of uterine MCs. Most interestingly, these increased number of uterine MCs in neuroectomized rats contained a much reduced cellular level of histamine. Our subsequent challenge experiments revealed that uterine MCs in nerve amputated rats exhibited enhanced histamine releasing rate in response to substance P and antiIgE, suggesting loss of nerve innervation in the uterus not only increases the population of uterine MCs, but also facilitates the release of histamine from MCs, thus subsequently interfere with the normal implantation process. Collectively, our findings provide a new line of evidence supporting the concept that immune–neuro-endocrine network plays important role during pregnancy establishment and maintenance. 相似文献
8.
Agarwal N Tochigi Y Adhikari AS Cui S Cui Y Iwakuma T 《Cell death and differentiation》2011,18(7):1208-1219
Murine double minute 2 (MDM2) binding protein (MTBP) has been implicated in tumor cell proliferation, but the underlying mechanisms remain unclear. The results of MTBP expression analysis during cell cycle progression demonstrated that MTBP protein was rapidly degraded during mitosis. Immunofluorescence studies revealed that a portion of MTBP was localized at the kinetochores during prometaphase. MTBP overexpression delayed mitotic progression from nuclear envelope breakdown (NEB) to anaphase onset and induced abnormal chromosome segregation such as lagging chromosomes, chromosome bridges, and multipolar chromosome segregation. Conversely, MTBP downmodulation caused an abbreviated metaphase and insufficient mitotic arrest, resulting in abnormal chromosome segregation, aneuploidy, decreased cell proliferation, senescence, and cell death, similar to that of Mad2 (mitotic arrest-deficient 2) downmodulation. Furthermore, MTBP downmodulation inhibited the accumulation of Mad1 and Mad2, but not BubR1 (budding uninhibited by benzimidazoles related 1), on the kinetochores, whereas MTBP overexpression inhibited the release of Mad2 from the metaphase kinetochores. These results may imply that MTBP has an important role in recruiting and/or retaining the Mad1/Mad2 complex at the kinetochores during prometaphase, but its degradation is required for silencing the mitotic checkpoint. Together, this study indicates that MTBP has a crucial role in proper mitotic progression and faithful chromosome segregation, providing new insights into regulation of the mitotic checkpoint. 相似文献
9.
10.
Pierre Gillotay Meghna Shankar Benoit Haerlingen Eski Sema Elif Macarena PozoMorales Ins Garteizgogeascoa Susanne Reinhardt Annekathrin Krnkel Juliane Blsche Andreas Petzold Nikolay Ninov Gokul Kesavan Christian Lange Michael Brand Anne Lefort Frdrick Libert Vincent Detours Sabine Costagliola Singh Sumeet Pal 《EMBO reports》2020,21(12)
11.
The preimplantation development of the mouse embryo leads to the divergence of the first two cell lineages, the inner cell mass and the trophectoderm. The formation of a microvillus pole during compaction at the eight-cell stage and its asymmetric inheritance during mitosis are key events in the emergence of these two cell populations. Ezrin, a member of the ERM protein family, seems to be involved in the formation and stabilization of this apical microvillus pole. To further characterize its function in early development, we mutated the key residue T567, which was reported to be essential for regulation of ezrin function through phosphorylation. Here, we show that expression of ezrin mutants in which the COOH-terminal threonine T567 was replaced by an aspartate (to mimic a phosphorylated residue; T567D) or by an alanine (to avoid phosphorylation; T567A) interferes with E-cadherin function and disrupts the first morphogenetic events of development: compaction and cavitation. The active mutant ezrin-T567D induces the formation of numerous and abnormally long microvilli at the surface of blastomeres. Moreover, it localizes all around the cell cortex and inhibits cell-cell adhesion and cell polarization at the eight-cell stage. During the following stages, only half of the embryos are able to compact and finally to cavitate. In those embryos, the amount of ezrin-T567D decreases in the basolateral areas, while the proportion of adherens junctions increases. The reverse inactive mutant ezrin-T567A is mainly cytoplasmic and does not perturb compaction at the eight-cell stage. However, at the 16-cell stage, it relocalizes at the basolateral cortex, leading to a strong decrease in the surface of adherens junctions, and finally, embryos abort development. Our results show that ezrin is directly involved in the formation of microvilli in the early mouse embryo. Moreover, they indicate that maintenance of ezrin in basolateral areas prevents microvilli breakdown and inhibits the formation of normal cell-cell contacts mediated by E-cadherin, thereby impairing blastomeres polarization and morphogenesis of the blastocyst. 相似文献
12.
Nuclear SOX9 is essential for Sertoli cell differentiation and the development of a testis. Exposure of Sertoli cells to exogenous oestrogen causes cytoplasmic retention of SOX9, inhibiting testis development and promoting ovarian development. The cytoplasmic localisation of SOX9 requires a stabilised microtubule network and a key MAPK complex, ERK1/2, is responsive to oestrogen and known to affect the microtubule network. We hypothesised that oestrogen could stabilise microtubules through the activation of ERK1/2 to promote the cytoplasmic retention of SOX9. Treatment of human testis-derived NT2/D1 cells for 30 min with oestrogen rapidly activated ERK1/2, stabilised the microtubule network and increased cytoplasmic localisation of SOX9. The effects of oestrogen on SOX9 and tubulin were blocked by the ERK1/2 inhibitor U0126, demonstrating that ERK1/2 mediates the stabilisation of microtubules and cytoplasmic retention of SOX9 by oestrogen. Together, these data revealed a previously unknown mechanism for oestrogen in impacting MAPK signalling to block SOX9 bioavailability and the differentiation of Sertoli cells. 相似文献
13.
There is a growing interest in developing experimental methods for tracking the developmental cell lineages of a complex organism.The recently developed CRISPR/Cas9-based barcoding method is,although highly promising,difficult to scale up because it relies on exogenous barcoding sequences that are engineered into the genome.In this study,we characterized 78 high-quality endogenous sites in the zebrafish genome that can be used as CRISPR/Cas9-based barcoding sites.The 78 sites are all highly expressed in most of the cell types according to single-cell RNA sequencing(scRNA-seq)data.Hence,the barcoding information of the 78 endogenous sites is recovered by the available scRNA-seq platforms,enabling simultaneous characterization of cell type and cell lineage information. 相似文献
14.
15.
Na Fang Tingxuan Gu Yahui Wang Shuzhen Wang Fengling Wang Yang An Wenqiang Wei Weijuan Zhang Xiangqian Guo Adil J Nazarali Shaoping Ji 《Journal of cellular and molecular medicine》2017,21(12):3337-3346
PTEN is a tumour suppressor that is frequently mutated in a variety of cancers. Hence, PTEN has significant potential as a therapeutic molecule. PTEN‐long is an alternative translation variant, with an additional 173 amino acids added to the N‐terminal of the canonical PTEN when CUG of the mRNA is utilized as the start codon. PTEN‐long is secreted into serum and can re‐enter cells throughout the body. One of the major barriers for gene therapy is to efficiently and specifically deliver DNA or RNA material to target cells. As an alternative approach, if a therapeutic protein can be directly delivered to target cell of interest, it should theoretically function well within the cells, particularly for genes that are deficiently expressed in vivo. Most therapeutic proteins are incapable of efficiently permeating the cell membrane. In this study, we have employed CRISPR/Cas9 gene editing tool combined with single‐stranded template to edit CTG of PTEN‐long to ATG in the genome. Two guide RNAs close to CTG site were found to have similar efficiency in driving PTEN‐long expression. Furthermore, we detected PTEN‐long expression in transfected whole‐cell lysate and in concentrated culture media in Western blot. Interestingly, the culture media of PTEN‐long expression can reduce Akt phosphorylation level and repress U87 cell proliferation compared to wild‐type U87 or control media. Taken together, PTEN‐long driven by CRISPR/Cas9 imports and exports cells and represses nearby cell proliferation, indicating the PTEN‐long generated by CRISPR/Cas9 has potential to be an alternative strategy for PTEN gene therapy. 相似文献
16.
17.
18.
Dynamic epigenetic regulation is critical for proper oogenesis and early embryo development. During oogenesis, fully grown germinal vesicle oocytes develop to mature Metaphase II oocytes which are ready for fertilization. Fertilized oocyte proliferates mitotically until blastocyst formation and the process is called early embryo development. Throughout oogenesis and early embryo development, spatio-temporal gene expression takes place, and this dynamic gene expression is controlled with the aid of epigenetics. Epigenetic means that gene expression can be altered without changing DNA itself. Epigenome is regulated through DNA methylation and histone modifications. While DNA methylation generally ends up with repression of gene expression, histone modifications can result in expression or repression depending on type of modification, type of histone protein and its specific residue. One of the modifications is histone acetylation which generally ends up with gene expression. Histone acetylation occurs through the addition of acetyl group onto amino terminal of the core histone proteins by histone acetyltransferases (HATs). Contrarily, histone deacetylation is associated with repression of gene expression, and it is catalyzed by histone deacetylases (HDACs). This review article focuses on what is known about alterations in the expression of HATs and HDACs and emphasizes importance of HATs and HDACs during oogenesis and early embryo development. 相似文献
19.
20.
Andrs Ortigosa Selena Gimenez‐Ibanez Nathalie Leonhardt Roberto Solano 《Plant biotechnology journal》2019,17(3):665-673
Due to their different lifestyles, effective defence against biotrophic pathogens normally leads to increased susceptibility to necrotrophs, and vice versa. Solving this trade‐off is a major challenge for obtaining broad‐spectrum resistance in crops and requires uncoupling the antagonism between the jasmonate (JA) and salicylate (SA) defence pathways. Pseudomonas syringae pv. tomato (Pto) DC3000, the causal agent of tomato bacterial speck disease, produces coronatine (COR) that stimulates stomata opening and facilitates bacterial leaf colonization. In Arabidopsis, stomata response to COR requires the COR co‐receptor AtJAZ2, and dominant AtJAZ2Δjas repressors resistant to proteasomal degradation prevent stomatal opening by COR. Here, we report the generation of a tomato variety resistant to the bacterial speck disease caused by PtoDC3000 without compromising resistance to necrotrophs. We identified the functional ortholog of AtJAZ2 in tomato, found that preferentially accumulates in stomata and proved that SlJAZ2 is a major co‐receptor of COR in stomatal guard cells. SlJAZ2 was edited using CRISPR/Cas9 to generate dominant JAZ2 repressors lacking the C‐terminal Jas domain (SlJAZ2Δjas). SlJAZ2Δjas prevented stomatal reopening by COR and provided resistance to PtoDC3000. Water transpiration rate and resistance to the necrotrophic fungal pathogen Botrytis cinerea, causal agent of the tomato gray mold, remained unaltered in Sljaz2Δjas plants. Our results solve the defence trade‐off in a crop, by spatially uncoupling the SA‐JA hormonal antagonism at the stomata, entry gates of specific microbes such as PtoDC3000. Moreover, our results also constitute a novel CRISPR/Cas‐based strategy for crop protection that could be readily implemented in the field. 相似文献