首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
There is an urgent need to design new anticancer agents that can prevent cancer cell proliferation even with minimal side effects. Accordingly, two new series of 3-methylquinoxalin-2(1H)-one and 3-methylquinoxaline-2-thiol derivatives were designed to act as VEGFR-2 inhibitors. The designed derivatives were synthesised and evaluated in vitro as cytotoxic agents against two human cancer cell lines namely, HepG-2 and MCF-7. Also, the synthesised derivatives were assessed for their VEGFR-2inhibitory effect. The most promising member 11e were further investigated to reach a valuable insight about its apoptotic effect through cell cycle and apoptosis analyses. Moreover, deep investigations were carried out for compound 11e using western-plot analyses to detect its effect against some apoptotic and apoptotic parameters including caspase-9, caspase-3, BAX, and Bcl-2. Many in silico investigations including docking, ADMET, toxicity studies were performed to predict binding affinity, pharmacokinetic, drug likeness, and toxicity of the synthesised compounds. The results revealed that compounds 11e, 11g, 12e, 12g, and 12k exhibited promising cytotoxic activities (IC50 range is 2.1 − 9.8 µM), comparing to sorafenib (IC50 = 3.4 and 2.2 µM against MCF-7 and HepG2, respectively). Moreover, 11b, 11f, 11g, 12e, 12f, 12g, and 12k showed the highest VEGFR-2 inhibitory activities (IC50 range is 2.9 − 5.4 µM), comparing to sorafenib (IC50 = 3.07 nM). Additionally, compound 11e had good potential to arrest the HepG2 cell growth at G2/M phase and to induce apoptosis by 49.14% compared to the control cells (9.71%). As well, such compound showed a significant increase in the level of caspase-3 (2.34-fold), caspase-9 (2.34-fold), and BAX (3.14-fold), and a significant decrease in Bcl-2 level (3.13-fold). For in silico studies, the synthesised compounds showed binding mode similar to that of the reference compound (sorafenib).  相似文献   

2.
Herein, a new wave of bis([1, 2, 4]triazolo)[4,3-a:3'',4''-c]quinoxaline derivatives have been successfully designed and synthesised. The synthesised derivatives were biologically investigated for their cytotoxic activities against HepG2 and MCF-7. Also, the tested compounds were further examined in vitro for their VEGFR-2 inhibitory activity. The most promising derivative 23j was further investigated for its apoptotic behaviour in HepG2 cell lines using flow cytometric and western-plot analyses. Additional in-silico studies were performed to predict how the synthesised compounds can bind to VEGFR-2 and to determine the drug-likeness profiling of these derivatives. The results revealed that compounds 23a, 23i, 23j, 23l, and 23n displayed the highest antiproliferative activities against the two cell lines with IC50 values ranging from 6.4 to 19.4 µM. Furthermore, compounds 23a, 23d, 23h, 23i, 23j, 23l, 23 m, and 23n showed the highest VEGFR-2 inhibitory activities with IC50 values ranging from 3.7 to 11.8 nM, comparing to sorafenib (IC50 = 3.12 nM). Moreover, compound 23j arrested the HepG2 cell growth at the G2/M phase and induced apoptosis by 40.12% compared to the control cells (7.07%). As well, such compound showed a significant increase in the level of caspase-3 (1.36-fold), caspase-9 (2.80-fold), and BAX (1.65-fold), and exhibited a significant decrease in Bcl-2 level (2.63-fold).  相似文献   

3.
In this study, a set of novel benzoxazole derivatives were designed, synthesised, and biologically evaluated as potential VEGFR-2 inhibitors. Five compounds (12d, 12f, 12i, 12l, and 13a) displayed high growth inhibitory activities against HepG2 and MCF-7 cell lines and were further investigated for their VEGFR-2 inhibitory activities. The most potent anti-proliferative member 12 l (IC50 = 10.50 μM and 15.21 μM against HepG2 and MCF-7, respectively) had the most promising VEGFR-2 inhibitory activity (IC50 = 97.38 nM). A further biological evaluation revealed that compound 12l could arrest the HepG2 cell growth mainly at the Pre-G1 and G1 phases. Furthermore, compound 12l could induce apoptosis in HepG2 cells by 35.13%. likely, compound 12l exhibited a significant elevation in caspase-3 level (2.98-fold) and BAX (3.40-fold), and a significant reduction in Bcl-2 level (2.12-fold). Finally, docking studies indicated that 12l exhibited interactions with the key amino acids in a similar way to sorafenib.  相似文献   

4.
Based on quinazoline, quinoxaline, and nitrobenzene scaffolds and on pharmacophoric features of VEGFR-2 inhibitors, 17 novel compounds were designed and synthesised. VEGFR-2 IC50 values ranged from 60.00 to 123.85 nM for the new derivatives compared to 54.00 nM for sorafenib. Compounds 15a, 15b, and 15d showed IC50 from 17.39 to 47.10 µM against human cancer cell lines; hepatocellular carcinoma (HepG2), prostate cancer (PC3), and breast cancer (MCF-7). Meanwhile, the first in terms of VEGFR-2 inhibition was compound 15d which came second with regard to antitumor assay with IC50 = 24.10, 40.90, and 33.40 µM against aforementioned cell lines, respectively. Furthermore, Compound 15d increased apoptosis rate of HepG2 from 1.20 to 12.46% as it significantly increased levels of Caspase-3, BAX, and P53 from 49.6274, 40.62, and 42.84 to 561.427, 395.04, and 415.027 pg/mL, respectively. Moreover, 15d showed IC50 of 253 and 381 nM against HER2 and FGFR, respectively.  相似文献   

5.
A new set of 4,6,7,8-tetrahydroquinolin-5(1H)-ones were designed as cytotoxic agents against breast cancer cell line (MCF-7) and synthesised under ultrasonic irradiation using chitosan decorated copper nanoparticles (CS/CuNPs) catalyst. The new compounds 4b, 4j, 4k, and 4e exhibited the most potent cytotoxic activity of IC50 values (0.002 − 0.004 µM) comparing to Staurosporine of IC50; 0.005 μM. The latter derivatives exhibited a promising safety profile against the normal human WI38 cells of IC50 range 0.0149 − 0.048 µM. Furthermore, the most promising cytotoxic compounds 4b, 4j were evaluated as multi-targeting agents against the RTK protein kinases; EGFR, HER-2, PDGFR-β, and VEGFR-2. Compound 4j showed promising inhibitory activity against HER-2 and PDGFR-β of IC50 values 0.17 × 10−3, 0.07 × 10−3 µM in comparison with the reference drug sorafenib of IC50; 0.28 × 10−3, 0.13 × 10−3 µM, respectively. In addition, 4j induced apoptotic effect and cell cycle arrest at G2/M phase preventing the mitotic cycle in MCF-7 cells.  相似文献   

6.
Discovering of new anticancer agents with potential activity against tubulin polymerisation is still a promising approach. Colchicine binding site inhibitors are the most relevant anti-tubulin polymerisation agents. Thus, new quinoline derivatives have been designed and synthesised to possess the same essential pharmacophoric features of colchicine binding site inhibitors. The synthesised compounds were tested in vitro against a panel of three human cancer cell lines (HepG-2, HCT-116, and MCF-7) using colchicine as a positive control. Comparing to colchicine (IC50 = 7.40, 9.32, and 10.41 µM against HepG-2, HCT-116, and MCF-7, respectively), compounds 20, 21, 22, 23, 24, 25, 26, and 28 exhibited superior cytotoxic activities with IC50 values ranging from 1.78 to 9.19 µM. In order to sightsee the proposed mechanism of anti-proliferative activity, the most active members were further evaluated in vitro for their inhibitory activities against tubulin polymerisation. Compounds 21 and 32 exhibited the highest tubulin polymerisation inhibitory effect with IC50 values of 9.11 and 10.5 nM, respectively. Such members showed activities higher than that of colchicine (IC50 = 10.6 nM) and CA-4 (IC50 = 13.2 nM). The impact of the most promising compound 25 on cell cycle distribution was assessed. The results revealed that compound 25 can arrest the cell cycle at G2/M phase. Annexin V and PI double staining assay was carried out to explore the apoptotic effect of the synthesised compounds. Compound 25 induced apoptotic effect on HepG-2 thirteen times more than the control cells. To examine the binding pattern of the target compounds against the tubulin heterodimers active site, molecular docking studies were carried out.  相似文献   

7.
A library of modified VEGFR-2 inhibitors was designed as VEGFR-2 inhibitors. Virtual screening was conducted for the hypothetical library using in silico docking, ADMET, and toxicity studies. Four compounds exhibited high in silico affinity against VEGFR-2 and an acceptable range of the drug-likeness. These compounds were synthesised and subjected to in vitro cytotoxicity assay against two cancer cell lines besides VEGFR-2 inhibitory determination. Compound D-1 showed cytotoxic activity against HCT-116 cells almost double that of sorafenib. Compounds A-1, C-6, and D-1 showed good IC50 values against VEGFR-2. Compound D-1 markedly increased the levels of caspase-8 and BAX expression and decreased the anti-apoptotic Bcl-2 level. Additionally, compound D-1 caused cell cycle arrest at pre-G1 and G2-M phases in HCT-116 cells and induced apoptosis at both early and late apoptotic stages. Compound D-1 decreased the level of TNF-α and IL6 and inhibited TNF-α and IL6. MD simulations studies were performed over 100 ns.  相似文献   

8.
A series of thieno[2,3-d]pyrimidine-based hydroxamic acid hybrids was designed and synthesised as multitarget anti-cancer agents, through incorporating the pharmacophore of EGFR, VEGFR2 into the inhibitory functionality of HDAC6. Three compounds (12c, 15b and 20b) were promising hits, whereas (12c) exhibited potent VEGFR2 inhibition (IC50=185 nM), potent EGFR inhibition (IC50=1.14 µM), and mild HDAC6 inhibition (23% inhibition). Moreover, compound (15c) was the most potent dual inhibitor among all the synthesised compounds, as it exhibited potent EGFR and VEGFR2 inhibition (IC50=19 nM) and (IC50=5.58 µM), respectively. While compounds (20d) and (7c) displayed nanomolar selective kinase inhibition with EGFR IC50= 68 nM and VEGFR2 IC50= 191 nM, respectively. All of the synthesised compounds were screened in vitro for their cytotoxic effect on 60 human NCI tumour cell lines. Additionally, molecular docking studies and ADMET studies were carried out to gain further insight into their binding mode and predict the pharmacokinetic properties of all the synthesised inhibitors.  相似文献   

9.
The serine/threonine protein kinases CDK2 and GSK-3β are key oncotargets in breast cancer cell lines, therefore, in the present study three series of oxindole-benzofuran hybrids were designed and synthesised as dual CDK2/GSK-3β inhibitors targeting breast cancer (5a–g, 7a–h, and 13a–b). The N1-unsubstituted oxindole derivatives, series 5, showed moderate to potent activity on both MCF-7 and T-47D breast cancer cell lines. Compounds 5d–f showed the most potent cytotoxic activity with IC50 of 3.41, 3.45 and 2.27 μM, respectively, on MCF-7 and of 3.82, 4.53 and 7.80 μM, respectively, on T-47D cell lines, in comparison to the used reference standard (staurosporine) IC50 of 4.81 and 4.34 μM, respectively. On the other hand, the N1-substituted oxindole derivatives, series 7 and 13, showed moderate to weak cytotoxic activity on both breast cancer cell lines. CDK2 and GSK-3β enzyme inhibition assay of series 5 revealed that compounds 5d and 5f are showing potent dual CDK2/GSK-3β inhibitory activity with IC50 of 37.77 and 52.75 nM, respectively, on CDK2 and 32.09 and 40.13 nM, respectively, on GSK-3β. The most potent compounds 5d–f caused cell cycle arrest in the G2/M phase in MCF-7 cells inducing cell apoptosis because of the CDK2/GSK-3β inhibition. Molecular docking studies showed that the newly synthesised N1-unsubstituted oxindole hybrids have comparable binding patterns in both CDK2 and GSK-3β. The oxindole ring is accommodated in the hinge region interacting through hydrogen bonding with the backbone CO and NH of the key amino acids Glu81 and Leu83, respectively, in CDK2 and Asp133 and Val135, respectively, in GSK-3β. Whereas, in series 7 and 13, the N1-substitutions on the oxindole nucleus hinder the compounds from achieving these key interactions with hinge region amino acids what rationalises their moderate to low anti-proliferative activity.  相似文献   

10.
In this work, the natural piperine moiety was utilised to develop two sets of piperine-based amides (5a–i) and ureas (8a–y) as potential anticancer agents. The anticancer action was assessed against triple negative breast cancer (TNBC) MDA-MB-231, ovarian A2780CP and hepatocellular HepG2 cancer cell lines. In particular, 8q stood out as the most potent anti-proliferative analogue against TNBC MDA-MB-231 cells with IC50 equals 18.7 µM, which is better than that of piperine (IC50 = 47.8 µM) and 5-FU (IC50 = 38.5 µM). Furthermore, 8q was investigated for its possible mechanism of action in MDA-MB-231 cells via Annexin V-FITC apoptosis assay and cell cycle analysis. Moreover, an in-silico analysis has proposed VEGFR-2 as a probable enzymatic target for piperine-based derivatives, and then has explored the binding interactions within VEGFR-2 active site (PDB:4ASD). Finally, an in vitro VEGFR-2 inhibition assay was performed to validate the in silico findings, where 8q showed good VEGFR-2 inhibitory activity with IC50 = 231 nM.  相似文献   

11.
A new series of pyrido[2,3-d]pyrimidin-4(3H)-one derivatives having the essential pharmacophoric features of EGFR inhibitors has been designed and synthesised. Cell viability screening was performed for these compounds against A-549, PC-3, HCT-116, and MCF-7 cell lines at a dose of 100 μM. The highest active derivatives (8a, 8 b, 8d, 9a, and 12b) were selected for IC50 screening. Compounds 8a, 8 b, and 9a showed the highest cytotoxic activities and were further investigated for wild EGFRWT and mutant EGFRT790M inhibitory activities. Compound 8a showed the highest inhibitory activities against EGFRWT and EGFRT790M with IC50 values of 0.099 and 0.123 µM, respectively. In addition, it arrested the cell cycle at pre-G1 phase and induced a significant apoptotic effect in PC-3 cells. Furthermore, compound 8a induced a 5.3-fold increase in the level of caspase-3 in PC-3 cells. Finally, docking studies were carried out to examine the binding mode of the synthesised compounds against both EGFRWT and EGFRT790M.  相似文献   

12.
New cyanobenzofurans derivatives 2–12 were synthesised, and their antiproliferative activity was examined compared to doxorubicin and Afatinib (IC50 = 4.17–8.87 and 5.5–11.2 µM, respectively). Compounds 2 and 8 exhibited broad-spectrum activity against HePG2 (IC50 = 16.08–23.67 µM), HCT-116 (IC50 = 8.81–13.85 µM), and MCF-7 (IC50 = 8.36–17.28 µM) cell lines. Compounds 2, 3, 8, 10, and 11 were tested as EGFR-TK inhibitors to demonstrate their possible anti-tumour mechanism compared to gefitinib (IC50 = 0.90 µM). Compounds 2, 3, 10, and 11 displayed significant EGFR TK inhibitory activity with IC50 of 0.81–1.12 µM. Compounds 3 and 11 induced apoptosis at the Pre-G phase and cell cycle arrest at the G2/M phase. They also increased the level of caspase-3 by 5.7- and 7.3-fold, respectively. The molecular docking analysis of compounds 2, 3, 10, and 11 indicated that they could bind to the active site of EGFR TK.  相似文献   

13.
Novel halogenated phenoxychalcones 2a–f and their corresponding N-acetylpyrazolines 3a–f were synthesised and evaluated for their anticancer activities against breast cancer cell line (MCF-7) and normal breast cell line (MCF-10a), compared with staurosporine. All compounds showed moderate to good cytotoxic activity when compared to control. Compound 2c was the most active, with IC50 = 1.52 µM and selectivity index = 15.24. Also, chalcone 2f showed significant cytotoxic activity with IC50 = 1.87 µM and selectivity index = 11.03. Compound 2c decreased both total mitogen activated protein kinase (p38α MAPK) and phosphorylated enzyme in MCF-7 cells, suggesting its ability to decrease cell proliferation and survival. It also showed the ability to induce ROS in MCF-7 treated cells. Compound 2c exhibited apoptotic behaviour in MCF-7 cells due to cell accumulation in G2/M phase and elevation in late apoptosis 57.78-fold more than control. Docking studies showed that compounds 2c and 2f interact with p38alpha MAPK active sites.  相似文献   

14.
New sorafenib derivatives containing thioether and nicotinamide moiety were designed and synthesized as B-Raf, B-RafV600E and VEGFR-2 multikinase inhibitors. Their in vitro enzymatic inhibitory activities against B-Raf, B-RafV600E and VEGFR-2 and their antiproliferative activities against HCT-116 and B16BL6 cell lines were evaluated and described. Most of the compounds showed potent activities against both cell lines and specific kinases. Compounds a1, b1 and c4, which exhibited the most potent inhibitory activities against B-Raf with IC50 of 21?nM, 27?nM and 17?nM, B-RafV600E with IC50 of 29?nM, 28?nM and 16?nM, VEGFR-2 with IC50 of 84?nM, 46?nM and 63?nM, respectively, and good antiproliferative activities, also demonstrated competitive antiangiogenic activities to sorafenib in in vitro HUVEC tube formation assay.  相似文献   

15.
To discover new lead compounds with anti-tumour activities, in the present study, natural diosgenin was hybridised with the reported benzoic acid mustard pharmacophore. The in vitro cytotoxicity of the resulting newly synthesised hybrids (8–10, 14a–14f, and 15a–15f) was then evaluated in three tumour cells (HepG2, MCF-7, and HeLa) as well as normal GES-1 cells. Among them, 14f possessed the most potential anti-proliferative activity against HepG2 cells, with an IC50 value of 2.26 µM, which was 14.4-fold higher than that of diosgenin (IC50 = 32.63 µM). Furthermore, it showed weak cytotoxicity against GES-1 cells (IC50 > 100 µM), thus exhibiting good antiproliferative selectivity between normal and tumour cells. Moreover, 14f could induce G0/G1 arrest and apoptosis of HepG2 cells. From a mechanistic perspective, 14f regulated cell cycle-related proteins (CDK2, CDK4, CDK6, cyclin D1 and cyclin E1) as well mitochondrial apoptosis pathway-related proteins (Bax, Bcl-2, caspase 9, and caspase 3). These findings suggested that hybrid 14f serves as a promising anti-hepatoma lead compound that deserves further research.  相似文献   

16.
A new series of benzoxazole derivatives were designed and synthesised to have the main essential pharmacophoric features of VEGFR-2 inhibitors. Cytotoxic activities were evaluated for all derivatives against two human cancer cell lines, MCF-7 and HepG2. Also, the effect of the most cytotoxic derivatives on VEGFR-2 protein concentration was assessed by ELISA. Compounds 14o, 14l, and 14b showed the highest activities with VEGFR-2 protein concentrations of 586.3, 636.2, and 705.7 pg/ml, respectively. Additionally, the anti-angiogenic property of compound 14b against human umbilical vascular endothelial cell (HUVEC) was performed using a wound healing migration assay. Compound 14b reduced proliferation and migratory potential of HUVEC cells. Furthermore, compound 14b was subjected to further biological investigations including cell cycle and apoptosis analyses. Compound 14b arrested the HepG2 cell growth at the Pre-G1 phase and induced apoptosis by 16.52%, compared to 0.67% in the control (HepG2) cells. The effect of apoptosis was buttressed by a 4.8-fold increase in caspase-3 level compared to the control cells. Besides, different in silico docking studies were also performed to get better insights into the possible binding mode of the target compounds with VEGFR-2 active sites.  相似文献   

17.
This research presents the design and synthesis of a novel series of phthalazine derivatives as Topo II inhibitors, DNA intercalators, and cytotoxic agents. In vitro testing of the new compounds against HepG-2, MCF-7, and HCT-116 cell lines confirmed their potent cytotoxic activity with low IC50 values. Topo II inhibition and DNA intercalating activities were evaluated for the most cytotoxic members. IC50 values determination demonstrated Topo II inhibitory activities and DNA intercalating affinities of the tested compounds at a micromolar level. Amongst, compound 9d was the most potent member. It inhibited Topo II enzyme at IC50 value of 7.02 ± 0.54 µM with DNA intercalating IC50 of 26.19 ± 1.14 µM. Compound 9d was then subjected to an in vivo antitumor examination. It inhibited tumour proliferation reducing solid tumour volume and mass. Additionally, it restored liver enzymes, proteins, and CBC parameters near-normal, indicating a remarkable amelioration in their functions along with histopathological examinations.  相似文献   

18.
New quinoline and isatin derivatives having the main characteristics of VEGFR-2 inhibitors was synthesised. The antiproliferative effects of these compounds were estimated against A549, Caco-2, HepG2, and MDA-MB-231. Compounds 13 and 14 showed comparable activities with doxorubicin against the Caco-2 cells. These compounds strongly inhibited VEGFR-2 kinase activity. The cytotoxic activities were evaluated against Vero cells. Compound 7 showed the highest value of safety and selectivity. Cell migration assay displayed the ability of compound 7 to prevent healing and migration abilities in the cancer cells. Furthermore, compound 7 induced apoptosis in Caco-2 through the expressive down-regulation of the apoptotic genes, Bcl2, Bcl-xl, and Survivin, and the upregulation of the TGF gene. Molecular docking against VEGFR-2 emerged the interactions of the synthesised compounds in a similar way to sorafenib. Additionally, seven molecular dynamics simulations studies were applied and confirmed the stability of compound 13 in the active pocket of VEGFR-2 over 100 ns.  相似文献   

19.
A series of quinazolin-4(3H)-one derivatives were synthesised and evaluated for their cytotoxicity against human Caucasian breast adenocarcinoma (MCF-7) and human ovarian carcinoma (A2780) cell lines. Cytotoxicity of the most tested compounds was 2- to 30-fold more than the positive control lapatinib (IC50 of 2j = 3.79 ± 0.96; 3j = 0.20 ± 0.02; and lapatinib = 5.9 ± 0.74) against MCF7 cell lines except two compounds (IC50 of 2 b = 15.72 ± 0.07 and 2e = 14.88 ± 0.99). On the other hand, cytotoxicity was 4 − 87 folds (IC50 of 3a = 3.00 ± 1.20; 3 g = 0.14 ± 0.03) more the positive control lapatinib (IC50 = 12.11 ± 1.03) against A2780 cell lines except compound 2e (IC50 = 16.43 ± 1.80). Among the synthesised quinazolin-4(3H)-one derivatives, potent cytotoxic 2f-j and 3f-j were investigated for molecular mechanism of action. Inhibitory activities of the compounds were tested against multiple tyrosine protein kinases (CDK2, HER2, EGFR and VEGFR2) enzymes. As expected, all the quinazolin-4(3H)-one derivatives were showed comparable inhibitory activity against those kinases tested, especially, compound 2i and 3i showed potent inhibitory activity against CDK2, HER2, EGFR tyrosine kinases. Therefore, molecular docking analysis for quinazolin-4(3H)-one derivatives 2i and 3i were performed, and it was revealed that compounds 2i and 3i act as ATP non-competitive type-II inhibitor against CDK2 kinase enzymes and ATP competitive type-I inhibitor against EGFR kinase enzymes. However, in case of HER2, compounds 2i act as ATP non-competitive type-II inhibitor and 3i act as ATP competitive type-I inhibitor. Docking results of known inhibitors were compared with synthesised compounds and found synthesised 2i and 3i are superior than the known inhibitors in case of interactions. In addition, in silico drug likeness properties of quinazolin-4(3H)-one derivatives showed better predicted ADME values than lapatinib.  相似文献   

20.
A novel series of thiazole-naphthalene derivatives as tubulin polymerisation inhibitors were designed, synthesised, and evaluated for the anti-proliferative activities. The majority of the tested compounds exhibited moderate to potent antiproliferative activity on the MCF-7 and A549 cancer cell lines. Among them, compound 5b was found to be the most active compound with IC50 values of 0.48 ± 0.03 and 0.97 ± 0.13 μM. Moreover, mechanistic studies revealed that 5b significantly inhibited tubulin polymerisation with an IC50 value of 3.3 µM, as compared to the standard drug colchicine (IC50 = 9.1 μM). Further cellular mechanism studies elucidated that 5b arrested the cell cycle at G2/M phase and induced apoptosis in MCF-7 cancer cells. Molecular modelling study indicated that 5b binds well to the colchicine binding site of tubulin. In summary, these results suggest that 5b represents a promising tubulin polymerisation inhibitor worthy of further investigation as potential anticancer agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号