首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Chagas disease (CD), caused by the protozoan Trypanosoma cruzi, is a prototypical neglected tropical disease. Specific immunity promotes acute phase survival. Nevertheless, one-third of CD patients develop chronic chagasic cardiomyopathy (CCC) associated with parasite persistence and immunological unbalance. Currently, the therapeutic management of patients only mitigates CCC symptoms. Therefore, a vaccine arises as an alternative to stimulate protective immunity and thereby prevent, delay progression and even reverse CCC. We examined this hypothesis by vaccinating mice with replication-defective human Type 5 recombinant adenoviruses (rAd) carrying sequences of amastigote surface protein-2 (rAdASP2) and trans-sialidase (rAdTS) T. cruzi antigens. For prophylactic vaccination, naïve C57BL/6 mice were immunized with rAdASP2+rAdTS (rAdVax) using a homologous prime/boost protocol before challenge with the Colombian strain. For therapeutic vaccination, rAdVax administration was initiated at 120 days post-infection (dpi), when mice were afflicted by CCC. Mice were analyzed for electrical abnormalities, immune response and cardiac parasitism and tissue damage. Prophylactic immunization with rAdVax induced antibodies and H-2Kb-restricted cytotoxic and interferon (IFN)γ-producing CD8+ T-cells, reduced acute heart parasitism and electrical abnormalities in the chronic phase. Therapeutic vaccination increased survival and reduced electrical abnormalities after the prime (analysis at 160 dpi) and the boost (analysis at 180 and 230 dpi). Post-therapy mice exhibited less heart injury and electrical abnormalities compared with pre-therapy mice. rAdVax therapeutic vaccination preserved specific IFNγ-mediated immunity but reduced the response to polyclonal stimuli (anti-CD3 plus anti-CD28), CD107a+ CD8+ T-cell frequency and plasma nitric oxide (NO) levels. Moreover, therapeutic rAdVax reshaped immunity in the heart tissue as reduced the number of perforin+ cells, preserved the number of IFNγ+ cells, increased the expression of IFNγ mRNA but reduced inducible NO synthase mRNA. Vaccine-based immunostimulation with rAd might offer a rational alternative for re-programming the immune response to preserve and, moreover, recover tissue injury in Chagas’ heart disease.  相似文献   

2.
Chagas disease, caused by the protozoan parasite Trypanosoma cruzi, affects several million people in Latin America. Myocarditis, observed during both the acute and chronic phases of the disease, is characterized by an inflammatory mononuclear cell infiltrate that includes CD4+ T cells. It is known that Th1 cytokines help to control infection. The role that Treg and Th17 cells may play in disease outcome, however, has not been completely elucidated. We performed a comparative study of the dynamics of CD4+ T cell subsets after infection with the T. cruzi Y strain during both the acute and chronic phases of the disease using susceptible BALB/c and non-susceptible C57BL/6 mice infected with high or low parasite inocula. During the acute phase, infected C57BL/6 mice showed high levels of CD4+ T cell infiltration and expression of Th1 cytokines in the heart associated with the presence of Treg cells. In contrast, infected BALB/c mice had a high heart parasite burden, low heart CD4+ T cell infiltration and low levels of Th1 and inflammatory cytokines, but with an increased presence of Th17 cells. Moreover, an increase in the expression of IL-6 in susceptible mice was associated with lethality upon infection with a high parasite load. Chronically infected BALB/c mice continued to present higher parasite burdens than C57BL/6 mice and also higher levels of IFN-γ, TNF, IL-10 and TGF-β. Thus, the regulation of the Th1 response by Treg cells in the acute phase may play a protective role in non-susceptible mice irrespective of parasite numbers. On the other hand, Th17 cells may protect susceptible mice at low levels of infection, but could, in association with IL-6, be pathogenic at high parasite loads.  相似文献   

3.

Background

Chagas disease is a major health problem in Latin America, and an emerging infectious disease in the US. Previously, we have screened the Trypanosoma cruzi sequence database by a computational/bioinformatics approach, and identified antigens that exhibited the characteristics of vaccine candidates.

Methodology

We investigated the protective efficacy of a multi-component DNA-prime/protein-boost vaccine (TcVac2) constituted of the selected candidates and cytokine (IL-12 and GM-CSF) expression plasmids in a murine model. C57BL/6 mice were immunized with antigen-encoding plasmids plus cytokine adjuvants, followed by recombinant proteins; and two-weeks later, challenged with T. cruzi trypomastigotes. ELISA and flow cytometry were employed to measure humoral (antibody isotypes) and cellular (lymphocyte proliferation, CD4+ and CD8+ T cell phenotype and cytokines) responses. Myocardial pathology was evaluated by H&E and Masson''s trichrome staining.

Principal Findings

TcVac2 induced a strong antigen-specific antibody response (IgG2b>IgG1) and a moderate level of lymphocyte proliferation in mice. Upon challenge infection, TcVac2-vaccinated mice expanded the IgG2b/IgG1 antibodies and elicited a substantial CD8+ T cell response associated with type 1 cytokines (IFN-γ and TNF-α) that resulted in control of acute parasite burden. During chronic phase, antibody response persisted, splenic activation of CD8+ T cells and IFN-γ/TNF-α cytokines subsided, and IL-4/IL-10 cytokines became dominant in vaccinated mice. The tissue parasitism, inflammation, and fibrosis in heart and skeletal muscle of TcVac2-vaccinated chronic mice were undetectable by histological techniques. In comparison, mice injected with vector or cytokines only responded to T. cruzi by elicitation of a mixed (type 1/type 2) antibody, T cell and cytokine response, and exhibited persistent parasite burden and immunopathology in the myocardium.

Conclusion

TcVac2-induced activation of type 1 antibody and lymphocyte responses provided resistance to acute T. cruzi infection, and consequently, prevented the evolution of chronic immunopathology associated with parasite persistence in chagasic hearts.  相似文献   

4.
The protozoan parasite, Trypanosoma cruzi, causes severe morbidity and mortality in afflicted individuals. Approximately 30% of T. cruzi infected individuals present with cardiac pathology. The invasive forms of the parasite are carried in the vascular system to infect other cells of the body. During transportation, the molecular mechanisms by which the parasite signals and interact with host endothelial cells (EC) especially heart endothelium is currently unknown. The parasite increases host thrombospondin-1 (TSP1) expression and activates the Wnt/β-catenin and hippo signaling pathways during the early phase of infection. The links between TSP1 and activation of the signaling pathways and their impact on parasite infectivity during the early phase of infection remain unknown. To elucidate the significance of TSP1 function in YAP/β-catenin colocalization and how they impact parasite infectivity during the early phase of infection, we challenged mouse heart endothelial cells (MHEC) from wild type (WT) and TSP1 knockout mice with T. cruzi and evaluated Wnt signaling, YAP/β-catenin crosstalk, and how they affect parasite infection. We found that in the absence of TSP1, the parasite induced the expression of Wnt-5a to a maximum at 2 h (1.73±0.13), P< 0.001 and enhanced the level of phosphorylated glycogen synthase kinase 3β at the same time point (2.99±0.24), P<0.001. In WT MHEC, the levels of Wnt-5a were toned down and the level of p-GSK-3β was lowest at 2 h (0.47±0.06), P< 0.01 compared to uninfected control. This was accompanied by a continuous significant increase in the nuclear colocalization of β-catenin/YAP in TSP1 KO MHEC with a maximum Pearson correlation coefficient of (0.67±0.02), P< 0.05 at 6 h. In WT MHEC, the nuclear colocalization of β-catenin/YAP remained steady and showed a reduction at 6 h (0.29±0.007), P< 0.05. These results indicate that TSP1 plays an important role in regulating β-catenin/YAP colocalization during the early phase of T. cruzi infection. Importantly, dysregulation of this crosstalk by pre-incubation of WT MHEC with a β-catenin inhibitor, endo-IWR 1, dramatically reduced the level of infection of WT MHEC. Parasite infectivity of inhibitor treated WT MHEC was similar to the level of infection of TSP1 KO MHEC. These results indicate that the β-catenin pathway induced by the parasite and regulated by TSP1 during the early phase of T. cruzi infection is an important potential therapeutic target, which can be explored for the prophylactic prevention of T. cruzi infection.  相似文献   

5.
The development of new drugs against Chagas disease is a priority since the currently available medicines have toxic effects, partial efficacy and are targeted against the acute phase of disease. At present, there is no drug to treat the chronic stage. In this study, we have optimized a whole cell-based assay for high throughput screening of compounds that inhibit infection of mammalian cells by Trypanosoma cruzi trypomastigotes. A 2000-compound chemical library was screened using a recombinant T. cruzi (Tulahuen strain) expressing β-galactosidase. Three hits were selected for their high activity against T. cruzi and low toxicity to host cells in vitro: PCH1, NT1 and CX1 (IC50: 54, 190 and 23 nM, respectively). Each of these three compounds presents a different mechanism of action on intracellular proliferation of T. cruzi amastigotes. CX1 shows strong trypanocidal activity, an essential characteristic for the development of drugs against the chronic stage of Chagas disease where parasites are found intracellular in a quiescent stage. NT1 has a trypanostatic effect, while PCH1 affects parasite division. The three compounds also show high activity against intracellular T. cruzi from the Y strain and against the related kinetoplastid species Leishmania major and L. amazonensis. Characterization of the anti–T. cruzi activity of molecules chemically related to the three library hits allowed the selection of two compounds with IC50 values of 2 nM (PCH6 and CX2). These values are approximately 100 times lower than those of the medicines used in patients against T. cruzi. These results provide new candidate molecules for the development of treatments against Chagas disease and leishmaniasis.  相似文献   

6.
Chronic Chagas cardiomyopathy evolves over a long period of time after initial infection by Trypanosoma cruzi. Similarly, a cardiomyopathy appears later in life in muscular dystrophies. This study tested the hypothesis that dystrophin levels are decreased in the early stage of T. cruzi-infected mice that precedes the later development of a cardiomyopathy. CD1 mice were infected with T. cruzi (Brazil strain), killed at 30 and 100 days post infection (dpi), and the intensity of inflammation, percentage of interstitial fibrosis, and dystrophin levels evaluated. Echocardiography and magnetic resonance imaging data were evaluated from 15 to 100 dpi. At 30 dpi an intense acute myocarditis with ruptured or intact intracellular parasite nests was observed. At 100 dpi a mild chronic fibrosing myocarditis was detected without parasites in the myocardium. Dystrophin was focally reduced or completely lost in cardiomyocytes at 30 dpi, with the reduction maintained up to 100 dpi. Concurrently, ejection fraction was reduced and the right ventricle was dilated. These findings support the hypothesis that the initial parasitic infection-induced myocardial dystrophin reduction/loss, maintained over time, might be essential to the late development of a cardiomyopathy in mice.  相似文献   

7.

Background

3-Hydroxy Kynurenine (3-HK) administration during the acute phase of Trypanosoma. cruzi infection decreases the parasitemia of lethally infected mice and improves their survival. However, due to the fact that the treatment with 3-HK is unable to eradicate the parasite, together with the known proapoptotic and immunoregulatory properties of 3-HK and their downstream catabolites, it is possible that the 3-HK treatment is effective during the acute phase of the infection by controlling the parasite replication, but at the same time suppressed the protective T cell response before pathogen clearance worsening the chronic phase of the infection. Therefore, in the present study, we investigated the effect of 3-HK treatment on the development of chronic Chagas’ disease.

Principal Findings

In the present study, we treated mice infected with T. cruzi with 3-HK at day five post infection during 5 consecutive days and investigated the effect of this treatment on the development of chronic Chagas disease. Cardiac functional (electrocardiogram) and histopathological studies were done at 60 dpi. 3-HK treatment markedly reduced the incidence and the severity of the electrocardiogram alterations and the inflammatory infiltrates and fibrosis in heart and skeletal muscle. 3-HK treatment modulated the immune response at the acute phase of the infection impairing the Th1- and Th2-type specific response and inducing TGF-β-secreting cells promoting the emergence of regulatory T cells and long-term specific IFN-γ secreting cells. 3-HK in vitro induced regulatory phenotype in T cells from T. cruzi acutely infected mice.

Conclusions

Our results show that the early 3-HK treatment was effective in reducing the cardiac lesions as well as altering the pattern of the immune response in experimental Chagas’ disease. Thus, we propose 3-HK as a novel therapeutic treatment able to control both the parasite replication and the inflammatory response.  相似文献   

8.
The inflammatory cytokine interferon-gamma (IFNγ) is crucial for immunity against intracellular pathogens such as the protozoan parasite Trypanosoma cruzi, the causative agent of Chagas disease (CD). IFNγ is a pleiotropic cytokine which regulates activation of immune and non-immune cells; however, the effect of IFNγ in the central nervous system (CNS) and astrocytes during CD is unknown. Here we show that parasite persists in the CNS of C3H/He mice chronically infected with the Colombian T. cruzi strain despite the increased expression of IFNγ mRNA. Furthermore, most of the T. cruzi-bearing cells were astrocytes located near IFNγ+ cells. Surprisingly, in vitro experiments revealed that pretreatment with IFNγ promoted the infection of astrocytes by T. cruzi increasing uptake and proliferation of intracellular forms, despite inducing increased production of nitric oxide (NO). Importantly, the effect of IFNγ on T. cruzi uptake and growth is completely blocked by the anti-tumor necrosis factor (TNF) antibody Infliximab and partially blocked by the inhibitor of nitric oxide synthesis L-NAME. These data support that IFNγ fuels astrocyte infection by T. cruzi and critically implicate IFNγ-stimulated T. cruzi-infected astrocytes as sources of TNF and NO, which may contribute to parasite persistence and CNS pathology in CD.  相似文献   

9.
10.
Trypanosoma cruzi (T. cruzi) is an intracellular protozoan parasite and the etiological agent of Chagas disease, a chronic infectious illness that affects millions of people worldwide. Although the role of TLR and Nod1 in the control of T. cruzi infection is well-established, the involvement of inflammasomes remains to be elucidated. Herein, we demonstrate for the first time that T. cruzi infection induces IL-1β production in an NLRP3- and caspase-1-dependent manner. Cathepsin B appears to be required for NLRP3 activation in response to infection with T. cruzi, as pharmacological inhibition of cathepsin B abrogates IL-1β secretion. NLRP3−/− and caspase1−/− mice exhibited high numbers of T. cruzi parasites, with a magnitude of peak parasitemia comparable to MyD88−/− and iNOS−/− mice (which are susceptible models for T. cruzi infection), indicating the involvement of NLRP3 inflammasome in the control of the acute phase of T. cruzi infection. Although the inflammatory cytokines IL-6 and IFN-γ were found in spleen cells from NLRP3−/− and caspase1−/− mice infected with T. cruzi, these mice exhibited severe defects in nitric oxide (NO) production and an impairment in macrophage-mediated parasite killing. Interestingly, neutralization of IL-1β and IL-18, and IL-1R genetic deficiency demonstrate that these cytokines have a minor effect on NO secretion and the capacity of macrophages to control T. cruzi infection. In contrast, inhibition of caspase-1 with z-YVAD-fmk abrogated NO production by WT and MyD88−/− macrophages and rendered them as susceptible to T. cruzi infection as NLRP3−/− and caspase-1−/− macrophages. Taken together, our results demonstrate a role for the NLRP3 inflammasome in the control of T. cruzi infection and identify NLRP3-mediated, caspase-1-dependent and IL-1R-independent NO production as a novel effector mechanism for these innate receptors.  相似文献   

11.

Background

Chagas disease is a neglected disease caused by the intracellular parasite Trypanosoma cruzi. Around 30% of the infected patients develop chronic cardiomyopathy or megasyndromes, which are high-cost morbid conditions. Immune response against myocardial self-antigens and exacerbated Th1 cytokine production has been associated with the pathogenesis of the disease. As IL-17 is involved in the pathogenesis of several autoimmune, inflammatory and infectious diseases, we investigated its role during the infection with T. cruzi.

Methodology/Principal Findings

First, we detected significant amounts of CD4, CD8 and NK cells producing IL-17 after incubating live parasites with spleen cells from normal BALB/c mice. IL-17 is also produced in vivo by CD4+, CD8+ and NK cells from BALB/c mice on the early acute phase of infection. Treatment of infected mice with anti-mouse IL-17 mAb resulted in increased myocarditis, premature mortality, and decreased parasite load in the heart. IL-17 neutralization resulted in increased production of IL-12, IFN-γ and TNF-α and enhanced specific type 1 chemokine and chemokine receptors expression. Moreover, the results showed that IL-17 regulates T-bet, RORγt and STAT-3 expression in the heart, showing that IL-17 controls the differentiation of Th1 cells in infected mice.

Conclusion/Significance

These results show that IL-17 controls the resistance to T. cruzi infection in mice regulating the Th1 cells differentiation, cytokine and chemokine production and control parasite-induced myocarditis, regulating the influx of inflammatory cells to the heart tissue. Correlations between the levels of IL-17, the extent of myocardial destruction, and the evolution of cardiac disease could identify a clinical marker of disease progression and may help in the design of alternative therapies for the control of chronic morbidity of chagasic patients.  相似文献   

12.
Chagas’ disease is a protozoosis caused by Trypanosoma cruzi that frequently shows severe chronic clinical complications of the heart or digestive system. Neurological disorders due to T. cruzi infection are also described in children and immunosuppressed hosts. We have previously reported that IL-12p40 knockout (KO) mice infected with the T. cruzi strain Sylvio X10/4 develop spinal cord neurodegenerative disease. Here, we further characterized neuropathology, parasite burden and inflammatory component associated to the fatal neurological disorder occurring in this mouse model. Forelimb paralysis in infected IL-12p40KO mice was associated with 60% (p<0.05) decrease in spinal cord neuronal density, glutamate accumulation (153%, p<0.05) and strong demyelization in lesion areas, mostly in those showing heavy protein nitrosylation, all denoting a neurotoxic degenerative profile. Quantification of T. cruzi 18S rRNA showed that parasite burden was controlled in the spinal cord of WT mice, decreasing from the fifth week after infection, but progressive parasite dissemination was observed in IL-12p40KO cords concurrent with significant accumulation of the astrocytic marker GFAP (317.0%, p<0.01) and 8-fold increase in macrophages/microglia (p<0.01), 36.3% (p<0.01) of which were infected. Similarly, mRNA levels for CD3, TNF-α, IFN-γ, iNOS, IL-10 and arginase I declined in WT spinal cords about the fourth or fifth week after infection, but kept increasing in IL-12p40KO mice. Interestingly, compared to WT tissue, lower mRNA levels for IFN-γ were observed in the IL-12p40KO spinal cords up to the fourth week of infection. Together the data suggest that impairments of parasite clearance mechanisms in IL-12p40KO mice elicit prolonged spinal cord inflammation that in turn leads to irreversible neurodegenerative lesions.  相似文献   

13.
The C-type lectin receptor mMGL is expressed exclusively by myeloid antigen presenting cells (APC) such as dendritic cells (DC) and macrophages (Mφ), and it mediates binding to glycoproteins carrying terminal galactose and α- or β-N-acetylgalactosamine (Gal/GalNAc) residues. Trypanosoma cruzi (T. cruzi) expresses large amounts of mucin (TcMUC)-like glycoproteins. Here, we show by lectin-blot that galactose moieties are also expressed on the surface of T. cruzi. Male mMGL knockout (-/-) and wild-type (WT) C57BL/6 mice were infected intraperitoneally with 104 T. cruzi trypomastigotes (Queretaro strain). Following T. cruzi infection, mMGL-/- mice developed higher parasitemia and higher mortality rates compared with WT mice. Although hearts from T. cruzi-infected WT mice presented few amastigote nests, mMGL-/- mice displayed higher numbers of amastigote nests. Compared with WT, Mφ from mMGL-/- mice had low production of nitric oxide (NO), interleukin (IL)-12 and tumor necrosis factor (TNF)-α in response to soluble T. cruzi antigens (TcAg). Interestingly, upon in vitro T. cruzi infection, mMGL-/- Mφ expressed lower levels of MHC-II and TLR-4 and harbored higher numbers of parasites, even when mMGL-/- Mφ were previously primed with IFN-γ or LPS/IFN-γ. These data suggest that mMGL plays an important role during T. cruzi infection, is required for optimal Mφ activation, and may synergize with TLR-4-induced pathways to produce TNF-α, IL-1β and NO during the early phase of infection.  相似文献   

14.
BackgroundChagas disease, caused by the protozoan Trypanosoma cruzi, is endemic in Latin America and is widely distributed worldwide because of migration. In 30% of cases, after years of infection and in the absence of treatment, the disease progresses from an acute asymptomatic phase to a chronic inflammatory cardiomyopathy, leading to heart failure and death. An inadequate balance in the inflammatory response is involved in the progression of chronic Chagas cardiomyopathy. Current therapeutic strategies cannot prevent or reverse the heart damage caused by the parasite. Aspirin-triggered resolvin D1 (AT-RvD1) is a pro-resolving mediator of inflammation that acts through N-formyl peptide receptor 2 (FPR2). AT-RvD1 participates in the modification of cytokine production, inhibition of leukocyte recruitment and efferocytosis, macrophage switching to a nonphlogistic phenotype, and the promotion of healing, thus restoring organ function. In the present study, AT-RvD1 is proposed as a potential therapeutic agent to regulate the pro-inflammatory state during the early chronic phase of Chagas disease.Methodology/Principal findingsC57BL/6 wild-type and FPR2 knock-out mice chronically infected with T. cruzi were treated for 20 days with 5 μg/kg/day AT-RvD1, 30 mg/kg/day benznidazole, or the combination of 5 μg/kg/day AT-RvD1 and 5 mg/kg/day benznidazole. At the end of treatment, changes in immune response, cardiac tissue damage, and parasite load were evaluated. The administration of AT-RvD1 in the early chronic phase of T. cruzi infection regulated the inflammatory response both at the systemic level and in the cardiac tissue, and it reduced cellular infiltrates, cardiomyocyte hypertrophy, fibrosis, and the parasite load in the heart tissue.Conclusions/SignificanceAT-RvD1 was shown to be an attractive therapeutic due to its regulatory effect on the inflammatory response at the cardiac level and its ability to reduce the parasite load during early chronic T. cruzi infection, thereby preventing the chronic cardiac damage induced by the parasite.  相似文献   

15.
We characterized the immune responses elicited by a DNA-prime/MVA-boost vaccine (TcVac3) constituted of antigenic candidates (TcG2 and TcG4), shown to be recognized by B and T cell responses in Trypanosoma cruzi (Tc) infected multiple hosts. C57BL/6 mice immunized with TcVac3 elicited a strong antigen-specific, high-avidity, trypanolytic antibody response (IgG2b>IgG1); and a robust antigen- and Tc-specific CD8+T cell response with type-1 cytokine (IFN-γ+TNF-α>IL-4+IL-10) and cytolytic effector (CD8+CD107a+IFN-γ+Perforin+) phenotype. The vaccine-induced effector T cells significantly expanded upon challenge infection and provided >92% control of T. cruzi. Co-delivery of IL-12 and GMCSF cytokine adjuvants didn’t enhance the TcVac3-induced resistance to T. cruzi. In chronic phase, vaccinated/infected mice exhibited a significant decline (up to 70%) in IFN-γ+CD8+T cells, a predominance of immunoregulatory IL-10+/CD4+T and IL10+/CD8+T cells, and presented undetectable tissue parasitism, inflammatory infiltrate, and fibrosis in vaccinated/infected mice. In comparison, control mice responded to challenge infection by a low antibody response, mixed cytokine profile, and consistent activation of pro-inflammatory CD8+T cells associated with parasite persistence and pathologic damage in the heart. We conclude that TcVac3 elicited type-1 effector T cell immunity that effectively controlled T. cruzi infection, and subsequently, predominance of anti-inflammatory responses prevented chronic inflammation and myocarditis in chagasic mice.  相似文献   

16.

Background

Chronic Chagas cardiomyopathy caused by Trypanosoma cruzi is the result of a pathologic process starting during the acute phase of parasite infection. Among different factors, the specific recognition of glycan structures by glycan-binding proteins from the parasite or from the mammalian host cells may play a critical role in the evolution of the infection.

Methodology and Principal Findings

Here we investigated the contribution of galectin–1 (Gal–1), an endogenous glycan-binding protein abundantly expressed in human and mouse heart, to the pathophysiology of T. cruzi infection, particularly in the context of cardiac pathology. We found that exposure of HL–1 cardiac cells to Gal–1 reduced the percentage of infection by two different T. cruzi strains, Tulahuén (TcVI) and Brazil (TcI). In addition, Gal–1 prevented exposure of phosphatidylserine and early events in the apoptotic program by parasite infection on HL–1 cells. These effects were not mediated by direct interaction with the parasite surface, suggesting that Gal–1 may act through binding to host cells. Moreover, we also observed that T. cruzi infection altered the glycophenotype of cardiac cells, reducing binding of exogenous Gal–1 to the cell surface. Consistent with these data, Gal–1 deficient (Lgals1 -/-) mice showed increased parasitemia, reduced signs of inflammation in heart and skeletal muscle tissues, and lower survival rates as compared to wild-type (WT) mice in response to intraperitoneal infection with T. cruzi Tulahuén strain.

Conclusion/Significance

Our results indicate that Gal–1 modulates T. cruzi infection of cardiac cells, highlighting the relevance of galectins and their ligands as regulators of host-parasite interactions.  相似文献   

17.
Trypanosoma cruzi-induced oxidative and inflammatory responses are implicated in chagasic cardiomyopathy. In this study, we examined the therapeutic utility of a subunit vaccine against T. cruzi and determined if glutathione peroxidase (GPx1, antioxidant) protects the heart from chagasic pathogenesis. C57BL/6 mice (wild-type (WT) and GPx1 transgenic (GPxtg) were infected with T. cruzi and at 45 days post-infection (dpi), immunized with TcG2/TcG4 vaccine delivered by a DNA-prime/Protein-boost (D/P) approach. The plasma and tissue-sections were analyzed on 150 dpi for parasite burden, inflammatory and oxidative stress markers, inflammatory infiltrate and fibrosis. WT mice infected with T. cruzi had significantly more blood and tissue parasite burden compared with infected/GPxtg mice (n = 5-8, p<0.01). Therapeutic vaccination provided >15-fold reduction in blood and tissue parasites in both WT and GPxtg mice. The increase in plasma levels of myeloperoxidase (MPO, 24.7%) and nitrite (iNOS activity, 45%) was associated with myocardial increase in oxidant levels (3-4-fold) and non-responsive antioxidant status in chagasic/WT mice; and these responses were not controlled after vaccination (n = 5-7). The GPxtg mice were better equipped than the WT mice in controlling T. cruzi-induced inflammatory and oxidative stress markers. Extensive myocardial and skeletal tissue inflammation noted in chagasic/WT mice, was significantly more compared with chagasic/GPxtg mice (n = 4-6, p<0.05). Vaccination was equally effective in reducing the chronic inflammatory infiltrate in the heart and skeletal tissue of infected WT and GPxtg mice (n = 6, p<0.05). Hypertrophy (increased BNP and ANP mRNA) and fibrosis (increased collagen) of the heart were extensively present in chronically-infected WT and GPxtg mice and notably decreased after therapeutic vaccination. We conclude the therapeutic delivery of D/P vaccine was effective in arresting the chronic parasite persistence and chagasic pathology; and GPx1 over-expression provided additive benefits in reducing the parasite burden, inflammatory/oxidative stress and cardiac remodeling in Chagas disease.  相似文献   

18.
Previous studies have demonstrated loss/reduction of dystrophin in cardiomyocytes in both acute and chronic stages of experimental Trypanosoma cruzi (T. cruzi) infection in mice. The mechanisms responsible for dystrophin disruption in the hearts of mice acutely infected with T. cruzi are not completely understood. The present in vivo and in vitro studies were undertaken to evaluate the role of inflammation in dystrophin disruption and its correlation with the high mortality rate during acute infection. C57BL/6 mice were infected with T. cruzi and killed 14, 20 and 26 days post infection (dpi). The intensity of inflammation, cardiac expression of dystrophin, calpain-1, NF-κB, TNF-α, and sarcolemmal permeability were evaluated. Cultured neonatal murine cardiomyocytes were incubated with serum, collected at the peak of cytokine production and free of parasites, from T. cruzi-infected mice and dystrophin, calpain-1, and NF-κB expression analyzed. Dystrophin disruption occurs at the peak of mortality and inflammation and is associated with increased expression of calpain-1, TNF-α, NF-κB, and increased sarcolemmal permeability in the heart of T. cruzi-infected mice at 20 dpi confirmed by in vitro studies. The peak of mortality occurred only when significant loss of dystrophin in the hearts of infected animals occurred, highlighting the correlation between inflammation, dystrophin loss and mortality.  相似文献   

19.
In the present study, two Leishmania infantum hypothetical proteins present in the amastigote stage, LiHyp1 and LiHyp6, were combined with a promastigote protein, IgE-dependent histamine-releasing factor (HRF); to compose a polyproteins vaccine to be evaluated against L. infantum infection. Also, the antigenicity of the three proteins was analyzed, and their use for the serodiagnosis of canine visceral leishmaniasis (CVL) was evaluated. The LiHyp1, LiHyp6, and HRF DNA coding sequences were cloned in prokaryotic expression vectors and the recombinant proteins were purified. When employed in ELISA assays, all proteins were recognized by sera from visceral leishmaniasis (VL) dogs, and presented no cross-reactivity with either sera from dogs vaccinated with a Brazilian commercial vaccine, or sera of Trypanosoma cruzi-infected or Ehrlichia canis-infected animals. In addition, the antigens were not recognized by antibodies from non-infected animals living in endemic or non-endemic areas for leishmaniasis. The immunogenicity and protective efficacy of the three proteins administered in the presence of saponin, individually or in combination (composing a polyproteins vaccine), were evaluated in a VL murine model: BALB/c mice infected with L. infantum. Spleen cells from mice inoculated with the individual proteins or with the polyproteins vaccine plus saponin showed a protein-specific production of IFN-γ, IL-12, and GM-CSF after an in vitro stimulation, which was maintained after infection. These animals presented significant reductions in the parasite burden in different evaluated organs, when compared to mice inoculated with saline or saponin. The decrease in parasite burden was associated with an IL-12-dependent production of IFN-γ against parasite total extracts (produced mainly by CD4+ T cells), correlated to the induction of parasite proteins-driven NO production. Mice inoculated with the recombinant protein-based vaccines showed also high levels of parasite-specific IgG2a antibodies. The polyproteins vaccine administration induced a more pronounced Th1 response before and after challenge infection than individual vaccines, which was correlated to a higher control of parasite dissemination to internal organs.  相似文献   

20.

Background

Trypanosoma cruzi, the etiologic agent of Chagas Disease, is a major vector borne health problem in Latin America and an emerging infectious disease in the United States.

Methods

We tested the efficacy of a multi-component DNA-prime/DNA-boost vaccine (TcVac1) against experimental T. cruzi infection in a canine model. Dogs were immunized with antigen-encoding plasmids and cytokine adjuvants, and two weeks after the last immunization, challenged with T. cruzi trypomastigotes. We measured antibody responses by ELISA and haemagglutination assay, parasitemia and infectivity to triatomines by xenodiagnosis, and performed electrocardiography and histology to assess myocardial damage and tissue pathology.

Results

Vaccination with TcVac1 elicited parasite-and antigen-specific IgM and IgG (IgG2>IgG1) responses. Upon challenge infection, TcVac1-vaccinated dogs, as compared to non-vaccinated controls dogs, responded to T. cruzi with a rapid expansion of antibody response, moderately enhanced CD8+ T cell proliferation and IFN-γ production, and suppression of phagocytes’ activity evidenced by decreased myeloperoxidase and nitrite levels. Subsequently, vaccinated dogs controlled the acute parasitemia by day 37 pi (44 dpi in non-vaccinated dogs), and exhibited a moderate decline in infectivity to triatomines. TcVac1-immunized dogs did not control the myocardial parasite burden and electrocardiographic and histopatholgic cardiac alterations that are the hallmarks of acute Chagas disease. During the chronic stage, TcVac1-vaccinated dogs exhibited a moderate decline in cardiac alterations determined by EKG and anatomo-/histo-pathological analysis while chronically-infected/non-vaccinated dogs continued to exhibit severe EKG alterations.

Conclusions

Overall, these results demonstrated that TcVac1 provided a partial resistance to T. cruzi infection and Chagas disease, and provide an impetus to improve the vaccination strategy against Chagas disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号