首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
α-Crystallin is renown for resisting crystallization and electron microscopic image analysis. The spatial conformation thus remaining elusive, the authors explored the structure and chaperone functioning by analyzing the effects of site-directed mutagenesis, the properties of naturally occurring aberrant forms of α-crystallin and the influence of chemical modifications. The authors observed that the globular multimeric structure, as well as the chaperoning capacity are remarkably tolerant towards changes and modifications in the primary structure. The essential features of the quaternary structure—globular shape, flexibility, highly polar exterior and accessible hydrophobic surface pockets—support a ‘pitted-flexiball’ model, which combines tetrameric subunit building blocks in an open micelle-like arrangement.  相似文献   

2.
α-Crystallin is a multimeric lenticular protein that has recently been shown to be expressed in several non-lenticular tissues as well. It is shown to prevent aggregation of non-native proteins as a molecular chaperone. By using a non-thermal aggregation model, we could show that this process is temperature-dependent. We investigated the chaperone-like activity of α-crystallin towards photo-induced aggregation of γ-crystallin, aggregation of insulin and on the refolding induced aggregation of β- and γ-crystallins. We observed that α-crystallin could prevent photo-aggregation of γ-crystallin and this chaperone-like activity of α-crystallin is enhanced several fold at temperatures above 30°C. This enhancement parallels the exposure of its hydrophobic surfaces as a function of temperature, probed using hydrophobic fluorescent probes such as pyrene and 8-anilinonaphthalene-1-sulfonate. We, therefore, concluded that α-crystallin prevents the aggregation of other proteins by providing appropriately placed hydrophobic surfaces; a structural transition above 30°C involving enhanced or re-organized hydrophobic surfaces of α-crystallin is important for its chaperone-like activity. We also addressed the issue of conformational aspects of target proteins and found that their aggregation prone molten globule states bind to α-crystallin. We trace these developments and discuss some new lines that suggest the role of tertiary structural aspects in the chaperone process.  相似文献   

3.
Natural vitamin E consists of four different tocopherol and four different tocotrienol homologues (α, β, γ, δ) that all have antioxidant activity. However, recent data indicate that the different vitamin E homologues also have biological activity unrelated to their antioxidant activity. In this review, we discuss the anti-inflammatory properties of the two major forms of vitamin E, α-tocopherol (αT) and γ-tocopherol (γT), and discuss the potential molecular mechanisms involved in these effects. While both tocopherols exhibit anti-inflammatory activity in vitro and in vivo, supplementation with mixed (γT-enriched) tocopherols seems to be more potent than supplementation with αT alone. This may explain the mostly negative outcomes of the recent large-scale interventional chronic disease prevention trials with αT only and thus warrants further investigation.  相似文献   

4.
Using a monoclonal antibody against the entire C-terminal end of human APP695 (643–695 sequence) and a monoclonal antibody directed against human β[1–40] amyloid peptide (βA), we show the existence of endogenous peptides proteolytically derived from APP in skin exudate of the non transgenic Xenopus laevis frog. The majority of the immunoreactivity is found associated with a 30 kDa molecular species. Biochemical fractionation followed by mass spectrometry identification allowed us to assign this molecular species to C-terminal APP fragments containing all or part of βA. According to the nature of N- and C-terminal amino acids we identified endogenous β-, γ-, ε-secretase-like activities, caspase-like activity and numerous endogenous cleavage sites within the β-amyloid sequence at same sites as those observed in human βA sequence. All these homologies with human indicate that X. laevis skin exudate is a good natural model to study βA metabolism. In this way, interestingly, we identified endogenous cleavages at prohormone convertase-like sites not yet described at the same sites in human. Finally, all identified peptide fragments were stably associated with a 20.2 kDa protein. These new observed features suggest new research pathways concerning human βA metabolism and carriage of hydrophobic peptide fragments issued from APP processing.  相似文献   

5.
The objective of this study was to evaluate the immunomodulatory effects of the Paecilomyces sinensis polysaccharides (PtP) on the activity of macrophages and human monocytes. A water-soluble polysaccharide, with estimated molecular weight of 2.04 × 104 Da, was isolated from P. sinensis. The results indicate that PtP can increase the activity of LDH and ACP in AMφ and PMφ of rats and human mononuclear cells, and enhance the pinocytic activity of macrophages and TNF-α production by human peripheral blood mononuclear cells (PBMC), suggesting that PtP had potent immunomodulatory properties and could be explored as a novel potential immunostimulants for the food and pharmaceutical purpose.  相似文献   

6.
Under normal conditions, lens aggregates of α-crystallin subunits, αA and αB, are found in the cytoplasm. However, during stress in nonlenticular tissues, αB translocates to the nucleus. A sequence study revealed that both subunits share a consensus sequence with other DNA binding proteins. These observations prompted us to investigate DNA binding with α-crystallin by UV-mediated photo-crosslinking. The data show that both single and double stranded DNA crosslink mainly with tetramers of α-crystallin subunits. The formation of tetramers appears to modify α-crystallin interactive properties and, therefore, its induction may have functional significance. These observations suggest that α-crystallin may have a nuclear function which includes DNA binding.  相似文献   

7.
The immunologic cross-reactivity of the α and α+ forms of the large subunit and the β subunit of the (Na+ + K+)-ATPase from brain and kidney preparations was examined using rabbit antiserum prepared against the purified holo lamb kidney enzyme. As previously reported by Sweadner ((1979) J. Biol. Chem. 254, 6060–6067) phosphorylation of the large subunit of the (Na+ + K+)-ATPase in the presence of Na+, Mg2+, and [γ-32P]ATP revealed that dog and, very likely, rat brain contain two forms of the large subunit (designated α and α+) while dog, rat, and lamb kidney contain only one form (α). The cross-reactivity of the α and α+ forms in these preparations was investigated by resolving the subunits by SDS-polyacrylamide gel electrophoresis. The separated polypeptides were transferred to unmodified nitrocellulose paper, and reacted with rabbit anti-lamb kidney serum, followed by detection of the antigen-antibody complex with 125I-labeled protein A and autoradiography. By this method, the α and α+ forms of rat and dog brain, as well as the α form found in kidney, were shown to cross-react. In addition, membranes from human cerebral cortex were shown to contain two immunoreactive bands corresponding to the α and α+ forms of dog brain. In contrast, the brain of the insect Manduca sexta contains only one immunoreactive polypeptide with a molecular weight intermediate to the α and α+ forms of dog brain. The β subunit from lamb, dog and rat kidney and from dog and rat brain cross-reacts with anti-lamb kidney (Na+ + K+)-ATPase serum. The mobility of the β subunit from dog and rat brain on SDS-polyacrylamide electrophoresis gels is greater than the mobility of the β subunit from lamb, rat or dog kidney.  相似文献   

8.
Bovine follicle-stimulating hormone (bFSH), a pituitary gonadotropin, is a heterodimer hormone that consists of a common α-subunit non-covalently associated with the hormone-specific β-subunit. Unfortunately, expression levels of recombinant bFSH or its subunits are invariably low. We report here the secretory expression of biologically active bFSHα and bFSHβ subunit in the methylotrophic yeast Hansenula polymorpha. A slightly higher level of expression of recombinant bFSH subunits was achieved by using the Saccharomyces cerevisiae-derived calnexin (ScCne1) as a chaperone in engineered H. polymorpha strains. The preliminary data also suggested that bFSH subunits expressed in H. polymorpha appeared to be less-glycosylated. This isoform had been shown to be 80% increase in in vivo bioactivity compared with the hyperglycosylated Pichia pastoris-derived recombinant bFSHα/β. More sophisticated applications of bFSH would profit from the assembled less-glycosylated heterodimer.  相似文献   

9.
An antiplasmodial bioguided investigation of the EtOAc extract of the aerial parts of Teucrium ramosissimum led to isolation and identification of three sesquiterpenoids, teucmosin, 4α-hydroxy-homalomenol C, 1β,4β,7α-trihydroxy-8,9-eudesmene and two trinorsesquiterpenoids, 4β-hydroxy-11,12,13-trinor-5-eudesmen-1,7-dione and 1β,4β-dihydroxy-11,12,13-trinor-8,9-eudesmen-7-one together with five known sesquiterpenoids, oplopanone, homalomenol C, oxo-T-cadinol, 1β,4β,6β-trihydroxyeudesmane, 1β,4β,7α-trihydroxyeudesmane and four flavonoids, 5-hydroxy-7,4′-dimethoxyflavone, salvigenin, genkwanin and cirsimaritin. The structures and the relative stereochemistry were elucidated by extensive spectroscopic studies including 1D and 2D NMR and mass spectrometry (MS). Homalomenol C, 4β-hydroxy-11,12,13-trinor-5-eudesmen-1,7-dione, oxo-T-cadinol and 1β,4β,6β-trihydroxyeudesmane displayed a significant in vitro antiplasmodial activity against Plasmodium falciparum with IC50 values ranging from 1.2 to 5.0 μg/ml. Furthermore, no cytotoxicity was observed upon the human diploid lung cell line MRC-5 for these compounds.  相似文献   

10.
G proteins are heterotrimeric GTPases that play a key role in signal transduction. The α subunit of Gs bound to GTP is capable of activating adenylyl cyclase. The amino acid sequences derived from two X. laevis cDNA clones that apparently code for Gsα subunits are 92% identical to those found in the short form of human Gsα. Despite this high homology, the X. laevis Gsα clones expressed in vitro, yielded a protein that are not able to activate the adenylyl cyclase present in S49 cyc membranes in contrast with human Gsα similarly expressed. This finding suggested that the few amino acid substitutions found in the amphibian subunit are important in defining the functionality of the human Gsα. The construction of chimeras composed of different fractions of the cDNAs of the two species was adopted as an approach in determining the regions of the molecule important in its functionality in this assay. Four pairs of chimeras were constructed using reciprocal combinations of the cDNAs coding for human and Xenopus Gsα. These eight constructs were expressed in vitro and equivalent amounts of the resulting proteins were assayed in the activation of adenylyl cyclase with GTPγs and isoproterenol. The results obtained here clearly indicate that the Gα sequence that extends from amino acid 70 to 140, is important for the functionality of human Gsα in activating adenylyl cyclase.  相似文献   

11.
The subunit molecular mass of α-crystallin, like many small heat-shock proteins (sHsps), is around 20 kDa although the protein exists as a large aggregate of average mass around 800 kDa. Despite this large size, a well-resolved 1H NMR spectrum is observed for α-crystallin which arises from short, polar, highly-flexible and solvent-exposed C-terminal extensions in each of the subunits, αA- and αB-crystallin. These extensions are not involved in interactions with other proteins (e.g. β- and γ-crystallins) under non-chaperone conditions. As determined by NMR studies on mutants of αA-crystallin with alterations in its C-terminal extension, the extensions have an important role in acting as solubilising agents for the relatively-hydrophobic α-crystallin molecule and the high-molecular-weight (HMW) complex that forms during the chaperone action. The related sHsp, Hsp25, also exhibits a flexible C-terminal extension. Under chaperone conditions, and in the HMW complex isolated from old lenses, the C-terminal extension of the αA-crystallin subunit maintains its flexibility whereas the αB-crystallin subunit loses, at least partially, its flexibility, implying that it is involved in interaction with the ‘substrate’ protein. The conformation of ‘substrate’ proteins when they interact with α-crystallin has been probed by 1H NMR spectroscopy and it is concluded that α-crystallin interacts with ‘substrate’ proteins that are in a disordered molten globule state, but only when this state is on its way to large-scale aggregation and precipitation. By monitoring the 1H and 31P NMR spectra of α-crystallin in the presence of increasing concentations of urea, it is proposed that α-crystallin adopts a two-domain structure with the larger C-terminal domain unfolding first in the presence of denaturant. All these data have been combined into a model for the quaternary structure of α-crystallin. The model has two layers each of approximately 40 subunits arranged in an annulus or toroid. A large central cavity is present whose entrance is ringed by the flexible C-terminal extensions. A large hydrophobic region in the aggregate is exposed to solution and is available for interaction with ‘substrate’ proteins during the chaperone action.  相似文献   

12.
Sequences of 40 very diverse representatives of the α-crystallin–small heat-shock protein (α-Hsp) superfamily are compared. Their characteristic C-terminal ‘α-crystallin domain' of 80–100 residues contains short consensus sequences that are highly conserved from prokaryotes to eukaryotes. There are, in addition, some positions that clearly distinguish animal from non-animal α-Hsps. The α-crystallin domain is predicted to consist of two hydrophobic β-sheet motifs, separated by a hydrophilic region which is variable in length. Combination of a conserved α-crystallin domain with a variable N-terminal domain and C-terminal extension probably modulates the properties of the various α-Hsps as stress-protective and structural oligomeric proteins. Phylogeny reconstruction indicates that multiple α-Hsps were already present in the last common ancestor of pro- and eukaryotes. It is suggested that during eukaryote evolution, animal and non-animal α-Hsps originated from different ancestral gene copies. Repeated gene duplications gave rise to the multiple α-Hsps present in most organisms.  相似文献   

13.
Human interferon-alpha 2b (IFN-α2b) was cloned and expressed in Pichia pastoris under the control of alcohol oxidase promoter (AOX1) using three different secretion signals. Native secretion signal of IFN-α2b, Saccharomyces cerevisiae MF-α factor prepro sequence and a mutated α prepro sequence without the Glu-Ala (EAEA) repeats were used separately for directing the secretion of IFN-α2b into the culture medium of P. pastoris. The native secretion signal of IFN-α2b did not secrete protein into the culture medium of P. pastoris. The α prepro sequence without the EAEA repeats directed the secretion of maximum amount of IFN-α2b (200 mg/l) into the culture medium, with the same amino acid sequence as that of the native IFN-α2b secreted by human lymphocytes. The full α prepro sequence, having both the protease cleavage sites for KEX2 and STE13 gene products, also secreted an equivalent amount of IFN-α2b into the culture medium. However, two interferon bands with similar molecular masses were observed, when full α prepro sequence was used for the secretion of IFN-α2b. The difference in the molecular masses of the two bands was found to arise due to the difference in the molecular masses of the N-terminal fragment, and the inefficient processing of secretion signal.  相似文献   

14.
We have previously characterized the biogenesis of the human CD8α protein expressed in rat epithelial cells. We now describe the biosynthesis, post-translational maturation and hetero-oligomeric assembly of the human CD8α/p56lck protein complex in stable transfectants obtained from the same cell line. There were no differences in the myristilation of p56lck, or in the dimerization, O-glycosylation and transport to the plasma membrane of CD8α, between cells expressing either one or both proteins. In the doubly expressing cells, dimeric forms of CD8α established hetero-oligomeric complexes with p56lck, as revealed by co-immunoprecipitation assays performed with anti-CD8α antibody. Moreover, p56lck bound in these hetero-oligomeric complexes was endowed with auto- and hetero-phosphorylating activity. The present study shows that: (1) the newly synthesized p56lck binds rapidly to CD8α and most of the p56lck is bound to CD8α at steady state; (2) CD8α/p56lck protein complexes are formed at internal membranes as well as at the plasma membrane; and (3) about 50% of complexed p56lck reaches the cell surface.  相似文献   

15.
Laminin-5 and α3β1 integrin promote keratinocyte survival; however, the downstream signaling pathways for laminin-5/α3β1 integrin-mediated cell survival had not been fully established. We report the unexpected finding of multiple interactions between 14-3-3 isoforms and proapoptotic proteins in the survival signaling pathway. Ln5-P4 motif within human laminin-5 α3 chain promotes cell survival and anti-apoptosis by inactivating Bad and YAP. This effect is achieved through the formation of 14-3-3ζ/p-Bad and 14-3-3σ/p-YAP complexes, which is initiated by α3β1 integrin and FAK/PI3K/Akt signaling. These complexes result in cytoplasmic sequestration of Bad and YAP and their subsequent inactivation. An increase in Akt1 activity in cells induces 14-3-3ζ and σ, p-Bad, and p-YAP, promoting cell survival, whereas decreasing Akt activity suppresses the same proteins and inhibits cell survival. Suppression of 14-3-3ζ with RNA-interference inhibits cell viability and promotes apoptosis. These results reveal a new mechanism of cell survival whereby the formation of 14-3-3ζ/p-Bad and 14-3-3σ/p-YAP complexes is initiated by laminin-5 stimulation via the α3β1 integrin and FAK/PI3K/Akt signaling pathways, thereby resulting in cell survival and anti-apoptosis.  相似文献   

16.
DNA topoisomerase II (topo II) is the target of many anticancer drugs and is often altered in drug-resistant cell lines. In some tumor cell lines truncated isoforms of topo IIα are localized to the cytoplasm. To study the localization and function of individual enzyme domains, we have epitope-tagged several fragments of human topo IIα and expressed them by retroviral infection of rodent and human cells. We find that fusion of the topo II fragments to the hydrophobic tail of human liver cytochrome b5 anchors the fusion protein to the outer face of cytoplasmic membranes, as determined by colocalization with calnexin and selective detergent permeabilization. Moreover, whereas the minimal ATPase domain (aa 1–266) is weakly and diffusely expressed, addition of the cytb5 anchor (1–266-b5) increases its steady-state level 16-fold with no apparent toxicity. Similar results are obtained with the complete ATPase domain (aa 1–426). A C-terminal domain (aa 1030–1504) of human topo IIα containing an intact dimerization motif is stably expressed and accumulates in the nucleus. Fusion to the cytb5 anchor counteracts the nuclear localization signal and relocalizes the protein to cytoplasmic membranes. In conclusion, we describe a technique that stabilizes and targets retrovirally expressed proteins such that they are exposed on the cytoplasmic surface of cellular membranes. This approach may be of general use for regulating the nuclear accumulation of drugs or proteins in living cells.  相似文献   

17.
The arabinogalactan (AG) component of the mycobacterial cell wall is an essential branched polysaccharide which tethers mycolic acids (m) to peptidoglycan (P), forming the mAGP complex. Much interest has been focused on the biosynthetic machinery involved in the production of this highly impermeable shield, which is the target for numerous anti-tuberculosis agents. The galactan domain of AG is synthesised via a bifunctional galactofuranosyltransferase (GlfT), which utilises UDP-Galf as its high-energy substrate. However, it has proven difficult to study the protein in its recombinant form due to difficulties in recovering pure soluble protein using standard expression systems. Herein, we describe the effects of glfT co-induction with a range of chaperone proteins, which resulted in an appreciable yield of soluble protein at 5 mg/L after a one-step purification procedure. We have shown that this purified enzyme transfers [14C]Galf to a range of both β(1 → 5) and β(1 → 6) linked digalactofuranosyl neoglycolipid acceptors with a distinct preference for the latter. Ligand binding studies using intrinsic tryptophan fluorescence have provided supporting evidence for the apparent preference of this enzyme to bind the β(1 → 6) disaccharide acceptor. However, we could not detect binding or galactofuranosyltransferase activity with an n-octyl β-d-Gal-(1 → 4)-α-l-Rha acceptor, which mimics the reducing terminus of galactan in the mycobacterial cell wall. Conversely, after an extensive bioinformatics analysis of the H37Rv genome, further cloning, expression and functional analysis of the Rv3792 open reading frame indicates that this protein affords galactofuranosyltransferase activity against such an acceptor and paves the way for a better understanding of galactan biosynthesis in Mycobacterium tuberculosis.  相似文献   

18.
Mouse peritoneal macrophages activated by bacillus Calmette-Guerin (BCG) were incubated with human α2-macroglobulin converted to its ‘fast’ form with either trypsin or methylamine before being stimulated with phorbol myrystate acetate. Both α2-macroglobulin-trypsin and α2-macroglobulin-methylamine inhibited macrophage production of superoxide anion (O2) while native α2-macroglobulin had little effect except at high concentration. The α2-macroglobulin ‘fast’ forms, which bind with a Kd of about 8 nM, inhibited 50% generation of O2(ID50) at a concentration of 7 nM while α2-macroglobulin inhibited O2 production with an ID50 of 141 nM. The ‘fast’ forms of α2-macroglobulin may play a role in the feedback regulation of inflammatory reactions.  相似文献   

19.
SNAREs are membrane-associated proteins that play a central role in vesicle targeting and intra-cellular membrane fusion reactions in eukaryotic cells. Here we describe the identification of AtBS14a and AtBS14b, putative SNAREs from Arabidopsis thaliana that share 60% amino acid sequence identity. Both AtBS14a and BS14b are dosage suppressors of the temperature-sensitive growth defect in sft1-1 cells and over-expression of either AtBS14a or AtBS14b can support the growth of sft1Δ cells but not bet1Δ cells. These data together with structure–function and biochemical studies presented herein suggest that AtBS14a and AtBS14b share properties that are consistent with them being members of the Bet1/Sft1 SNARE protein family.  相似文献   

20.
The lichen-forming order Lichinales, generally characterized by prototunicate asci and the development of thalli with cyanobacteria, has recently been recognized as a separate class of ascomycetes, Lichinomycetes, as a result of molecular phylogenetic studies. As alkali and water-soluble (F1SS) polysaccharides reflect phylogeny in other ascomycetes, a polysaccharide from Lichina pygmaea and L. confinis was purified and characterized to investigate whether these F1SS compounds in the Lichinomycetes were distinctive. Nuclear magnetic resonance (NMR) spectroscopy and chemical analyses revealed this as a galactomannan comprising a repeating unit consisting of an α-(1→6)-mannan backbone, mainly substituted by single α-galactofuranose residues at the O-2- or the O-2,4- positions linked to a small mannan core. With the exception of the trisubstituted mannopyranose residues previously described in polysaccharides from other lichens belonging to orders now placed in Lecanoromycetes, the structure of this galactomannan most closely resembles those found in several members of the Onygenales in Eurotiomycetes. Our polysaccharide data support molecular studies showing that Lichina species are remote from Lecanoromycetes as the galactofuranose residues are in the α-configuration. That the Lichinomycetes were part of an ancestral lichenized group can not be established from the present data because the extracted polysaccharide does not have the galactofuranose residue in the β configuration; however, the data does suggest that an ancestor of the Lichinomycetes contained a mannan and was part of an early radiation in the ascomycetes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号