首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The frequency of dominant cataract and recessive specific-locus mutations and mutation mosaics was determined in F1 mice derived from post-spermatogonial germ-cell stage treatment with 2 X 80, 160 or 250 mg/kg ethylnitrosourea. A total of 5 dominant cataract mutations, 3 dominant cataract mutation mosaics, 1 specific-locus mutation and 9 specific-locus mutation mosaics were recovered in 15,542 screened F1 offspring. Results indicate that ethylnitrosourea treatment increases the mutation rate of dominant cataract and recessive specific-locus alleles in post-spermatogonial germ-cell stages of the mouse and that the mutations occur mainly as mosaics. Genetic confirmation of newly induced mutations occurring as mosaics is more problematical for induced recessive alleles than for induced dominant alleles and should be considered when evaluating such mutagenicity results.  相似文献   

2.
The induction of dominant cataract mutations by procarbazine was studied concomitantly with the induction of specific-locus mutations in treated male mice. The most effective dose in the specific-locus test, 600 mg/kg of procarbazine, and a fractionated dose of 5 X 200 mg/kg were used. The frequencies of dominant cataract mutations were higher, but not significantly different from the historical control. The ratio between the number of recovered specific-locus and dominant cataract mutations was in accordance with that found in our experiments with gamma-rays (Ehling et al., 1982; Kratochvilova, 1981) or in experiments with ethylnitrosourea (Favor, 1986). A total of 3 dominant cataract mutations were recovered in the offspring of procarbazine-treated spermatogonial stem cells. Two mutations had complete penetrance while the third exhibited a reduced penetrance of approximately 70%. The viability and fertility of the heterozygotes of all 3 mutations were not affected. Only 1 mutation was shown to be viable as a homozygote.  相似文献   

3.
乙烷基亚硝基脲诱变获得两例新的被毛突变小鼠   总被引:5,自引:0,他引:5  
采用乙烷基亚硝基脲 (Ethylnitrosourea ,ENU)诱变获得人类疾病的小鼠模型。用 1 0 0mg/KgENU腹腔注射 1 8只 8- 1 0周龄的雄性DBA小鼠 (G0 ) ,每周一次共三次 ;将在后代小鼠 (G1 )筛查到的突变个体与同品系配种 ,若异常表型传代则可能为显性突变 ;选择表型正常的G1 雄鼠与C5 7BL/ 6配种得F1 ,将F1 随机互交得到F2 ,依据F2 是否有突变鼠出现确定可能存在的隐性突变。结果表明 ,在 35 2只G1 小鼠中 ,1 4只出现异常表型 ,但均未传代 ;对 30只G1 雄鼠的隐性遗传试验获得 2只稀毛突变小鼠 ,均表现为被毛稀疏、幼鼠生长缓慢  相似文献   

4.
J Favor 《Mutation research》1986,162(1):69-80
A systematic comparison of the frequency of dominant cataract and recessive specific-locus mutations in mice has been extended to include results for 80 and 160 mg ethylnitrosourea per kg body weight spermatogonial treatment. The frequency of confirmed dominant cataract mutations in the historical control, 80 and 160 mg/kg ethylnitrosourea treatment groups was 1/22594, 8/5090 and 14/6435, respectively. The frequency of recessive specific-locus mutations in the same dose groups was, respectively, 19/227805, 20/13274 and 35/8658. These present results confirm previous results, which indicate that ethylnitrosourea is effective in inducing both recessive specific-locus and dominant cataract mutations although the per locus mutation rate to recessive alleles was observed to be approximately 6 times greater than the per locus mutation rate to dominant alleles. The exclusion of certain classes of lens opacity variant phenotypes, previously demonstrated not to be due to a dominant mutation, from the group of suspected dominant cataract mutations subjected to a genetic confirmation test has greatly improved the efficiency of the test. A total of 23 dominant cataract mutations were confirmed from a group of 67 phenotypic variants. Of the 23 confirmed dominant cataract mutations, 8 were shown to have reduced transmission to the following generation of offspring expressing the mutant phenotype. These results are also consistent with previous results for ethylnitrosourea or radiation treatment in which it was shown that approximately one-third of the recovered mutations have reduced penetrance. One group of dominant cataract mutations, with phenotypic effects on the polar, sub-capsular or corneal regions, is overly represented in the group of recovered mutations with a reduced transmission of offspring expressing the mutant phenotype. Two hypotheses are suggested for this observation, both dependent on the fact that the regions affected indicate that the mutations are expressed later in the development of the eye. Either all carrier individuals have not expressed the phenotype at the time of examination and classification, or later acting mutations are more subject to environmental interactions resulting in more variable expression. Finally, it is argued that a dominant cataract mutation test represents a most practicable protocol to screen for induced dominant mutations in germ cells of the mouse. The imposition of the criterion that suspected variants be subjected to a genetic confirmation test has at least two advantages beside the fact that results represent unambiguous mutational events.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
Jack Favor 《Mutation research》1998,405(2):1488-226
Ethylnitrosourea is the most efficient chemical mutagen in spermatogonial stem cells of the mouse and its mutagenic activity has been intensively studied. The pertinent specific-locus mutation test results for a discussion of low dose–effect studies have been summarized and indicate: (1) A threshold dose response best characterizes the relationship between dose and mutation rate. (2) The reduced effectiveness of ethylnitrosourea in the low dose range is likely due to a saturable repair process. (3) The recovery of the saturable repair process as assessed in fractionated dose experiments is long (ca. 168 h). The dynamics of stem cell spermatogonia suggests a long time interval before the cell population passes through at least one cell division and this may be relevant to an interpretation of the fractionation effects. (4) There is a slight but important discrepancy between the predicted and observed mutagenic activity of ethylnitrosourea in the low dose range. This is interpreted to be due to the differences between a mathematical abstraction and the biological realities of the system being studied.  相似文献   

6.
7.
The mutagenic effectiveness of ethylnitrosurea (ENU) was assessed in treated spermatogonia of DBA/2 mice. In a total of 17,515 offspring examined following 160 mg ENU/kg body weight treatment of parental males, 26 forward specific-locus mutations, 2 reverse specific-locus mutations and 9 dominant cataract mutations were recovered. ENU increased the mutation rate to all 3 genetic endpoints. However, ENU was less effective in treated DBA/2 mice than in the standard experimental protocol employing treated hybrid (102 X C3H)F1 male mice. This observed difference for a direct-acting mutagen such as ENU may result from differences in the detoxification of ENU or from differences in the DNA-repair capabilities of strain DBA/2. The first documented reverse mutation of the b allele is reported. The reversion was shown to be due to an AT to GC transition. To date, in addition to the reverse mutation of the b allele, 5 independent ENU-induced mutations recovered in germ cells of the mouse have been molecularly characterized and all have been shown to be base substitutions at an AT site. This is in contrast to the expected mechanism of ENU mutation induction due to O6-ethylguanine adduct formation which results in a GC to AT base-pair substitution and emphasizes the complexities of mutagenesis in germ cells of mammals.  相似文献   

8.
Chlormethine (WHO), a nitrogen mustard (2,2'-dichloro-N-methyldiethylamine), induces dominant lethal and specific-locus mutations in spermatozoa and spermatids of mice.  相似文献   

9.
The chemotherapeutic agent busulfan was tested for the induction of dominant lethal and specific-locus mutations in male mice. A dose of 5 mg/kg b.w. of busulfan induces dominant lethal mutations in spermatozoa. A dose of 20 mg/kg b.w. induces dominant lethal mutations in spermatozoa and spermatids. A total of 83,196 offspring were scored in the specific-locus experiments. Busulfan-induced specific-locus mutations were recovered in spermatozoa and spermatids, but not in spermatogonia. The sensitivity patterns for the induction of dominant lethal and specific-locus mutations by busulfan in germ cells of male mice are similar but not identical.  相似文献   

10.
J D West  G Fisher 《Mutation research》1986,164(2):127-136
6 mice with inherited cataracts and 1 new allele of microphthalmia were recovered from 923 progeny of untreated, outbred, PT stock females that had been mated to inbred C3H/HeH strain males, whose spermatogonia had been exposed to 250 mg/kg of ethylnitrosourea (ENU). The cataract phenotypes were quite variable in expression and 5/6 showed a similar range of phenotypes. 2 of the 6 mutant mice were daughters of the same ENU-treated C3H/HeH male and probably represent repeats of the same mutation. One mutation, designated lens opacity-4 (Lop-4), has been genetically mapped to the distal region of chromosome 2. The yield of 5 presumably independent cataract mutations from 923 F1 offspring is a little higher than that reported by others in similar but larger scale experiments. Approximately 3-5% of the F1 mice examined had cataracts, yet only 6/49 (12%) of these, in the experimental group, were inherited as simple Mendelian traits. We consider that this high frequency of false positives (88%), and the incomplete penetrance and variable expressivity of the cataract mutations that were found, pose serious problems that could undermine the objective nature of the dominant cataract mutation test. We suggest that further studies be made to evaluate whether the use of inbred strains would reduce the variability in the system and so make the test more objective. However, it seems likely that the high false positive rate will continue to be a serious drawback to this test system.  相似文献   

11.
Ifosfamide induced dominant lethal mutations in spermatozoa of mice at doses of 200 and 300 mg/kg and in spermatids and spermatocytes at 600 mg/kg. The highest dose also induced specific-locus mutations in post-spermatogonial germ-cell stages of mice but not in spermatogonial stem cells. The nature of the induced mutations suggests they are intergenic. The spermatogenic specificity of ifosfamide in mouse germ cells is similar to that of the structurally related cytostatic drugs cyclophosphamide and trofosfamide. Due to the post-spermatogonial germ cell specificity of ifosfamide, the genetic risk is limited to a few weeks after exposure.  相似文献   

12.
13.
14.
1-Methyl-1-nitrosourea (MNU) induced specific-locus mutations in mice in all spermatogenic stages except spermatozoa. After intraperitoneal injection of 70 mg/kg body weight of MNU a high yield of specific-locus mutations was observed in spermatids (21.8 × 10−5 mutations per locus per gamete). The highest mutational yield was induced in differentiating spermatogonia. In 1954 offspring we observed 5 specific-locus mutants (44.8 × 10 mutations per locus per gamete). In addition, 2 mosaics were recovered, which gave a combined mutation rate of 62.7 × 10−5. In As spermatogonia the mutation rate was 3.9 × 10−5. The same dose of 70 mg/kg of MNU induced dominant lethal mutations 5–48 days post treatment, mainly due to post-implantation loss in spermatids and spermatocytes. It is interesting to compare the induction pattern of mutations by MNU with methyl methanesulfonate (MMS), ethyl methanesulfonate (EMS) and ethylnitrosourea (ENU). Based on the different spermatogenic response of the induction of specific-locus mutations we can characterize the 4 mutagens in the following way: EMS = MMS ≠ MNU ≠ ENU.  相似文献   

15.
Cyclophosphamide is the most widely used antineoplastic agent. It is also used to condition patients for bone-marrow transplantations. Because of the general interest of this compound we initiated a systematic study of the induction of dominant-lethal and specific-locus mutations in male mice. In addition, we investigated the induction of specific-locus mutations by the combined treatment of cyclophosphamide and ionizing radiation.A dose of 40 mg/kg bw of cyclophosphamide caused dominant-lethal mutations in male mice only in the 1st and 2nd week after treatment. A dose of 120 mg/kg induced dominant-lethal mutations in the mating intervals 1–21 days posttreatment. No dominant lethal mutations were observed after the 3rd week. The same differential spermatogenic response was observed for the induction of specific-locus mutations. Cyclophosphamide induced recessive mutations exclusively in spermatozoa and spermatids. No mutations were recovered from treated spermatocytes and spermatogonia. In contrast to cyclophosphamide, radiation induces specific-locus mutations in all germ-cell stages.The pretreatment with cyclophosphamide 24 h before radiation enhanced the frequency of specific-locus mutations in spermatogonia. The distribution of the observed mutations among the 7 loci and their viability supports the hypothesis that these mutations were induced by radiation rather than by cyclophosphamide. The compound causes an immediate inhibition of DNA and RNA synthesis in spermatogonia. The inhibition very likely interferes with the repair process. The disturbance of the repair process is probably the cause of the synergistic effect for the induction of specific-locus mutations in spermatogonia of mice after pretreatment with cyclophosphamide 24 h before irradiation.  相似文献   

16.
Specific-locus mutation frequencies in mouse stem-cell spermatogonia were determined in 3 experiments in which mature male mice were exposed to 100,m 300, or 500 R of X-rays followed, 24 h later, by intraperitoneal injection of 100 mg/kg of ethylnitrosourea (ENU). The purpose was to find out if the mutation frequencies would be augmented over those expected on the basis of additivity of the effects of the separate treatments. Such augmentation had been observed in earlier work in which exposure to 100 or 500 R of X-rays was followed 24 h later by a second exposure of 500 R. No augmentation was observed for X-rays followed by ENU. The mutation frequencies in all 3 experiments actually fell below those expected on the basis of additivity, although the reductions were not statistically significant.  相似文献   

17.
Methyl methanesulfonate (MMS) induces specific-locus and dominant lethal mutations in spermatozoa and spermatids of mice. A dose of 15 mg/kg b.w. of MMS induces 9% dominant lethal mutations in the most sensitive germ-cell stages, corresponding to the mating intervals 5-8 and 9-12 days post treatment. A dose of 150 mg/kg b.w. of MMS in the same mating intervals induces 100% dominant lethal mutations. The sensitivity pattern for the induction of dominant lethal and specific-locus mutations is the same. In the mating interval 5-8 days a dose of 20 mg/kg b.w. of MMS induced 3.8 x 10(-5) mutations per locus per gamete. The yield of specific-locus and dominant lethal mutations in the low dose range increases proportionally with the dose. A dose given in 2, 4 or 5 fractions yields the same frequency of mutations as a single injection of the total dose. The additivity of small doses proves that the pre-mutational lesions are not or only partially repaired in these stages and that MMS is not or only partially detoxified. In addition, the frequency of dominant lethal and specific-locus mutations depends on the germ-cell stage.  相似文献   

18.
Male mice were X-irradiated with 3.0 + 3.0 Gy or 5.1 + 5.1 Gy (fractionation interval 24 h). The offspring were screened for dominant cataract and recessive specific locus mutations. In the 3.0 + 3.0-Gy spermatogonial treatment group, 3 dominant cataract mutations were confirmed in 15 551 offspring examined and 29 specific locus mutations were recovered in 18 139 offspring. In the post-spermatogonial treatment group, 1 dominant cataract mutation was obtained in 1120 offspring and 1 recessive specific locus mutation was recovered in 1127 offspring. The induced mutation rate per locus, per gamete, per Gy calculated for recessive specific locus mutations is 2.0 X 10(-5) in post-spermatogonial stages and 3.7 X 10(-5) in spermatogonia. For dominant cataract mutations, assuming 30 loci, the induced mutation rate is 5.0 X 10(-6) in the post-spermatogonial stages and 1.1 X 10(-6) in spermatogonia. In the 5.1 + 5.1-Gy spermatogonial treatment group, 3 dominant cataract mutations were obtained in 11 205 offspring, whereas in 13 201 offspring 27 recessive specific locus mutations were detected in the spermatogonial group. In the post-spermatogonial treatment group no dominant cataract mutation was observed in 425 offspring and 2 recessive specific locus mutations were detected in 445 offspring. The induced mutation rate per locus, gamete and Gy in spermatogonia for recessive specific locus mutations is 2.8 X 10(-5) and for dominant cataract mutations 0.9 X 10(-6). In post-spermatogonial stages, the mutation rate for recessive specific locus alleles is 6.2 X 10(-5). In the concurrent untreated control group, in 11 036 offspring no dominant cataract mutation and in 23 518 offspring no recessive specific locus mutation was observed. Litter size and the number of carriers at weaning have been determined in the confirmation crosses of the obtained dominant cataract mutants as indicators of viability and penetrance effects. Two mutants had a statistically significantly reduced litter size and one mutant had a statistically significantly reduced penetrance.  相似文献   

19.
T Nagao 《Mutation research》1988,202(1):25-33
Daily doses of ENU (25-100 mg/kg) were injected intraperitoneally into ICR strain male mice for 5 days. The males were mated to untreated virgin females of the same strain on days 1-16 and 64-80 after the last dose. Copulations during these periods involve, respectively, treated postmeiotic cells and spermatogonial stem cells. The uterine contents were examined on day 18 of pregnancy for evidence of dominant lethal effects. The fetuses were examined for external and skeletal abnormalities. ENU treatment of either postmeiotic cells or spermatogonial stem cells caused dose-dependent significant increases in the incidence of abnormal fetuses over the control level. The induction rate per live fetus per unit dose in mg/kg by treating spermatogonial stem cells was estimated to be 1.0 X 10(-4), which is 3-fold lower than the rate previously estimated for the same endpoint at the same germ cell stage with MNU. Cleft palate was the most frequent external abnormality in the ENU-treated and the control series. Malformed vertebrae was the most frequent skeletal abnormality in the treated series. Rib fusion was the only skeletal malformation seen in the control series. Dominant lethals were clearly induced when germ cells were treated as postmeiotic cells.  相似文献   

20.
A total of 219 specific-locus, 35 dominant cataract and 44 enzyme-activity mutations induced in spermatogonia of mice by radiation or ethylnitrosourea (ENU) treatment were characterized for homozygous viability as well as fitness effects on heterozygous carriers. For all 3 genetic endpoints, the frequency of homozygous lethal mutations was higher in the group of radiation-induced mutations than in the ENU-treatment group. These observations are consistent with the hypothesis that radiation-induced mutations recovered in the mouse are mainly due to small deletions while ENU induces mainly intragenic mutations. The overall fitness of mutant heterozygotes was reduced for the group of radiation-induced specific-locus, dominant cataract and enzyme-activity mutations while the ENU-induced mutations exhibited no reduction in fitness. The fitness reduction of heterozygous carriers for a newly occurring mutation in a population is important in determining the persistence of the mutation in a population, and thus the total number of individuals affected before a mutation is eventually eliminated from the population. For the present results a maximal persistence of 12 generations and a minimal persistence of 3 generations is estimated. These results are consistent with the 6-7-generation persistence time assumed by UNSCEAR (1982) in an estimate of the overall effects of radiation-induced mutations in man.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号