首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
A 1.6-kb cDNA clone was isolated by screening a library prepared from chick corneal mRNA with a cDNA clone to bovine decorin. The cDNA contained an open reading frame coding for a M(r) 39,683 protein. A 19-amino-acid match with sequence from the N-terminus of core protein from the corneal chondroitin/dermatan sulfate proteoglycan confirmed the clone as a corneal proteoglycan and the homology with human and bovine decorin confirmed its identity as decorin. Structural features of the deduced sequence include a 16-amino-acid signal peptide, a 14-amino-acid propeptide, cysteine residues at the N- and C-terminal regions, and a central leucine-rich region (comprising 63% of the protein) containing nine repeats of the sequence LXXLXLXXNXL/I. Chick decorin contains three variations of this sequence that are tandemly linked to form a unit and three units tandemly linked to form the leucine-rich region. The presence of beta bend amino acids flanking the units may serve to delineate the units as structural elements of the leucine-rich region. Sequence homology within the repeats and the spacing of the repeats suggest that this region arose by duplication. Chick decorin primarily differs from mammalian decorins in the 19-amino-acid sequence that starts the N-terminus of the core protein. Within this region, the serine that serves as a potential acceptor for the chondroitin/dermatan sulfate side chain is preceded by a glycine instead of being followed by a glycine as it is in the mammalian decorins and all other mammalian proteoglycans.  相似文献   

4.
Primary structure of a mouse mastocytoma proteoglycan core protein.   总被引:7,自引:0,他引:7       下载免费PDF全文
The complete nucleotide sequence of a mouse mastocytoma proteoglycan core protein mRNA was determined. The mRNA, estimated to contain 1.1 kb, encodes a protein with an Mr of 16715. A 21-amino acid-residue region of the protein is composed of alternating serine and glycine residues. Southern-blot analysis of mouse genomic DNA with cDNA containing sequences corresponding to the Ser-Gly repeat region revealed more than 15 gene fragments. Hybridization with a probe corresponding to the N-terminal portion of the core protein identified two fragments, and cDNA covering the C-terminal part of the core protein and the 3' untranslated part of the mRNA hybridized to a single fragment. Antibodies against the core protein, obtained after immunization of rabbits with a fusion protein, reacted with both chondroitin sulphate proteoglycans and heparin proteoglycans produced by the tumour. In immunoblotting of a microsomal fraction from the mastocytoma, the antiserum recognized a single protein (Mr 17,000), which probably represents the core protein before glycosylation.  相似文献   

5.
The cDNA for the full-length core protein of the small chondroitin sulphate proteoglycan II of bovine bone was cloned and sequenced. A 1.3 kb clone (lambda Pg28) was identified by plaque hybridization with a previously isolated 1.0 kb proteoglycan cDNA clone (lambda Pg20), positively identified previously by polyclonal and monoclonal antibody reactivity and by hybrid-selected translation in vitro [Day, Ramis, Fisher, Gehron Robey, Termine & Young (1986) Nucleic Acids Res. 14, 9861-9876]. The cDNA sequences of both clones were identical in areas of overlap. The 360-amino-acid-residue protein contains a 30-residue propeptide of which the first 15 residues are highly hydrophobic. The mature protein consists of 330 amino acid residues corresponding to an Mr of 36,383. The core protein contains three potential glycosaminoglycan-attachment sites (Ser-Gly), only one of which is within a ten-amino-acid-residue homologous sequence seen at the known attachment sites of related small proteoglycans. Comparisons of the published 24-residue N-terminal protein sequence of bovine skin proteoglycan II core protein with the corresponding region in the deduced sequence of the bovine core protein reveals complete homology. Comparison of the cDNA-derived sequences of bovine bone and human embryonic fibroblast proteoglycans shows a hypervariable region near the N-terminus. Nucleotide homology between bone and fibroblast core proteins was 87% and amino acid homology was 90%.  相似文献   

6.
A proteoglycan was isolated from fetal membranes which had been separated from human postpartum placenta. The glycosaminoglycan side chains (Mr = 55,000) were found to be composed of 75% chondroitin sulfate and 23% dermatan sulfate as determined by chondroitinase ABC or AC II digestion. NH2-terminal microsequencing of the intact proteoglycan revealed a single amino acid sequence of (sequence; see text) A rabbit antiserum raised against the intact proteoglycan reacted in sodium dodecyl sulfate-polyacrylamide gel electrophoresis immunoblotting with Mr = 45,000 and 43,000 core polypeptides from chondroitinase-treated proteoglycan. Affinity-purified antibodies from this antiserum precipitated from human embryonic fibroblast culture fluid a proteoglycan which has an approximate Mr = 120,000 in sodium dodecyl sulfate-polyacrylamide gel electrophoresis. This proteoglycan has on the average two polysaccharide side chains. As defined by chondroitinase digestion, these chains consist of 66% dermatan sulfate and 20% chondroitin sulfate. Digestion of the glycosaminoglycan with chondroitinase ABC converted the proteoglycan to a Mr = 45,000 major and a Mr = 43,000 minor core polypeptide. Tissue immunofluorescence localized the proteoglycan to interstitial matrices, suggesting that it is a product of mesenchymal cells. The methods we have devised for the purification of the fetal membrane proteoglycan in chemical amounts and the antibodies we have prepared against it will allow studies on the structural and functional properties of the proteoglycan and on the expression of immunologically cross-reactive proteoglycans by various cells and tissues.  相似文献   

7.
8.
9.
The embryonic rat parietal yolk sac has been previously shown to synthesize a number of basement membrane glycoconjugates including type IV procollagen, laminin, and entactin. In this study, parietal yolk sacs were isolated from 14.5-day rat embryos and incubated in organ culture for 4-7 h with [35S]sulfate, [3H] glucosamine, and/or 3H-labeled amino acids, and the newly synthesized proteoglycans were characterized. The major [35S]sulfate-labeled macromolecule represented approximately 90% of the medium and 80% of the tissue radioactivity. It also represented nearly 80% of the total [3H]glucosamine-labeled glycosaminoglycans. After purification by sequential ion-exchange chromatography and isopycnic CsCI density gradient ultracentrifugation, size-exclusion high-performance liquid chromatography showed a single species with an estimated Mr of 8-9 X 10(5). The intact proteoglycan did not form aggregates in the presence of exogenous hyaluronic acid or cartilage aggregates. Alkaline borohydride treatment released glycosaminoglycan chains with Mr of 2.0 X 10(4) which were susceptible to chondroitinase AC II and chondroitinase ABC digestion. Analysis by high-performance liquid chromatography of the disaccharides generated by chondroitinase ABC digestion revealed that chondroitin 6-sulfate was the predominant isomer. The uronic acid content of the glycosaminoglycans was 92% glucuronic acid and 8% iduronic acid, and the hexosamine content was 96% galactosamine and 4% glucosamine. No significant amounts of N- or O-linked oligosaccharides were detected. Deglycosylation of the proteoglycan with chondroitinase ABC in the presence of protease inhibitors revealed a protein core with an estimated Mr of 1.25-1.35 X 10(5). These results indicated that the major proteoglycan synthesized by the 14.5-day rat embryo parietal yolk sac is a high-density chondroitin sulfate containing small amounts of copolymeric dermatan sulfate. Hyaluronic acid and minor amounts of heparan sulfate proteoglycan were also detected.  相似文献   

10.
Dermatan sulphate proteoglycans were purified from juvenile human articular cartilage, with a yield of about 2 mg/g wet wt. of cartilage. Both dermatan sulphate proteoglycan I (DS-PGI) and dermatan sulphate proteoglycan II (DS-PGII) were identified and the former was present in greater abundance. The two proteoglycans could not be resolved by agarose/polyacrylamide-gel electrophoresis, but could be resolved by SDS/polyacrylamide-gel electrophoresis, which indicated average Mr values of 200,000 and 98,000 for DS-PGI and DS-PGII respectively. After digestion with chondroitin ABC lyase the Mr values of the core proteins were 44,000 for DS-PGI and 43,000 and 47,000 for DS-PGII, with the smaller core protein being predominant in DS-PGII. Sequence analysis of the N-terminal 20 amino acid residues reveals the presence of a single site for the potential substitution of dermatan sulphate at residue 4 of DS-PGII and two such sites at residues 5 and 10 for DS-PGI.  相似文献   

11.
The cell surface proteoglycan fraction isolated by mild trypsin treatment of NMuMG mouse mammary epithelial cells contains largely heparan sulfate, but also 15-24% chondroitin sulfate glycosaminoglycans. We conclude that this fraction contains a unique hybrid proteoglycan bearing both heparan sulfate and chondroitin sulfate glycosaminoglycans because (i) the proteoglycan behaves as a single species by sizing, ion exchange and collagen affinity chromatography, and by isopycnic centrifugation, even in the presence of 8 M urea or 4 M guanidine hydrochloride, (ii) the behavior of the chondroitin sulfate in these separation techniques is affected by heparan sulfate-specific probes and vice versa, and (iii) proteoglycan core protein bearing both heparan sulfate and chondroitin sulfate is recognized by a single monoclonal antibody. Removal of both types of glycosaminoglycan reduces the proteoglycan to a core protein of approximately 53 kDa. The proteoglycan fraction is heterogeneous in size, largely due to a variable number and/or length of the glycosaminoglycan chains. We estimate that one or two chondroitin sulfate chains (modal Mr of 17,000) exist on the proteoglycan for every four heparan sulfate chains (modal Mr of 36,000). Synthesis of these chains is reportedly initiated on an identical trisaccharide that links the chains to the same amino acid residues on the core protein. Therefore, some regulatory information, perhaps residing in the amino acid sequence of the core protein, must determine the type of chain synthesized at any given linkage site. Post-translational addition of these glycosaminoglycans to the protein may provide information affecting its ultimate localization. It is likely that the protein is directed to specific sites on the cell surface because of the ability of the glycosaminoglycans to recognize and bind extracellular components.  相似文献   

12.
13.
Structure of a precursor to human pancreatic polypeptide   总被引:3,自引:0,他引:3  
We have isolated mRNA from a human pancreatic islet cell tumor and have identified among the cell-free translation products a precursor of pancreatic polypeptide with an approximate Mr = 11,000. Recombinant DNA molecules encoding this precursor were selected from a cDNA library prepared from the islet tumor mRNA. From the nucleotide sequences of cDNAs encoding the precursor, we have deduced the complete amino acid sequence of pre-propancreatic polypeptide. These sequences encode a protein consisting of 95 amino acid residues with a Mr = 10,432. The sequence of human pancreatic polypeptide occurs in the middle of the precursor and is flanked at its carboxyl terminus by a 27-amino acid sequence which is similar to a peptide previously isolated from canine pancreatic islets. At the amino terminus of the precursor is a probable leader sequence which is rich in hydrophobic residues. A smaller pancreatic polypeptide-related protein was generated in cell-free translations of mRNA supplemented with microsomal membranes. Sequential Edman degradations of this smaller peptide indicate that the sequence of pancreatic polypeptide is located at the amino terminus of the prohormone.  相似文献   

14.
We describe the isolation and sequencing of a cDNA encoding mouse Pgp-1. An oligonucleotide probe corresponding to the NH2-terminal sequence of the purified protein was synthesized by the polymerase chain reaction and used to screen a mouse macrophage lambda gt11 library. A cDNA clone with an insert of 1.2 kilobases was selected and sequenced. In Northern blot analysis, only cells expressing Pgp-1 contained mRNA species that hybridized with this Pgp-1 cDNA. The nucleotide sequence of the cDNA has a single open reading frame that yields a protein-coding sequence of 1076 base pairs followed by a 132-base pair 3'-untranslated sequence that includes a putative polyadenylation signal but no poly(A) tail. The translated sequence comprises a 13-amino acid signal peptide followed by a polypeptide core of 345 residues corresponding to an Mr of 37,800. Portions of the deduced amino acid sequence were identical to those obtained by amino acid sequence analysis from the purified glycoprotein, confirming that the cDNA encodes Pgp-1. The predicted structure of Pgp-1 includes an NH2-terminal extracellular domain (residues 14-265), a transmembrane domain (residues 266-286), and a cytoplasmic tail (residues 287-358). Portions of the mouse Pgp-1 sequence are highly similar to that of the human CD44 cell surface glycoprotein implicated in cell adhesion. The protein also shows sequence similarity to the proteoglycan tandem repeat sequences found in cartilage link protein and cartilage proteoglycan core protein which are thought to be involved in binding to hyaluronic acid.  相似文献   

15.
The small proteoglycans (PG) of bone consist of two different molecular species: one containing one chondroitin sulfate chain (PG II) and the other, two chains (PG I). These two proteoglycans are found in many connective tissues and have Mr = 45,000 core proteins with clear differences in their NH2-terminal sequences. Using antisera produced against synthetic peptides derived from the human PG I and PG II NH2 termini, we have isolated several cDNA clones from a lambda gt11 expression library made against mRNA isolated from human bone-derived cells. The clones, which reacted with antisera to the PG II peptide, were sequenced and found to be identical with the PG II class of proteoglycan from human fibroblasts known as PG-40 or decorin. The clones reacting to the PG I antisera, however, had a unique sequence. The derived protein sequence of PG I showed sufficient homology with the PG II sequence (55% of the amino acids are identical, with most others involving chemically similar amino acid substitutions) to strongly suggest that the two proteins were the result of a gene duplication. PG II (decorin) contains one attached glycosaminoglycan chain, while PG I probably contains two chains. For this reason, we suggest that PG I be called biglycan. The biglycan protein sequence contains 368 residues (Mr = 42,510 for the complete sequence and Mr = 37,983 for the secreted form) that appears to consist predominantly of a series of 12 tandem repeats of 24 residues. The repeats are recognized by their conserved leucines (and leucine-like amino acids) in positions previously reported for a diverse collection of proteins (none of which is thought to be proteoglycans) including: two morphogenic proteins (toll and chaoptin) in the fruit fly; a yeast adenylate cyclase; and two human proteins, the von Willebrand Factor-binding platelet membrane protein, GPIb, and a rare serum protein, leucine-rich glycoprotein.  相似文献   

16.
We have isolated cDNA clones that code for a proteoglycan-related polypeptide with unique properties. A lambda gt11 expression library made from human fibroblast mRNA was screened with an antiserum made against a proteoglycan fraction from human fetal membranes. One group of positive clones revealed an open reading frame coding for 685 amino acids from the COOH terminus of a polypeptide. This amino acid sequence contains a domain that is strongly homologous with the COOH-terminal core protein domain of the large aggregating cartilage proteoglycan. This domain also contains sequences that are homologous with vertebrate lectins that bind terminal galactosyl, N-acetyl-glucosaminyl or mannosyl residues. On the NH2-terminal side of the lectin-like domain the cDNA-derived amino acid sequence contains two epidermal growth factor-related segments. The cDNA clones were shown to belong to a chondroitin sulfate proteoglycan by using antisera made against two peptides predicted from the cDNA sequence. These antisera were reactive with a proteoglycan fraction from fibroblasts after chondroitinase treatment of the fraction but not after treatment with heparinase or no treatment. Among the several polypeptides reactive with the anti-peptide antibodies the largest one, corresponding to a molecular weight of about 400,000, is likely to be the intact core protein, whereas the smaller polypeptides may be processing products or products of artifactual proteolysis. These results show that the amino acid sequence belongs to a proteoglycan core protein, and the sequence, therefore, provides a molecular definition to this proteoglycan. The lectin-related and growth factor-like sequences in the core protein of this proteoglycan suggest that it may play a role in intercellular signaling.  相似文献   

17.
18.
The structure, biosynthesis, and metabolism of proteoglycans in the HL-60 human promyelocytes were studied by metabolic labeling in culture with [35S]sulfate, [3H]glucosamine, [3H]serine, and [3H]leucine. These cells synthesize a single predominant species of intracellular proteoglycan with an approximate molecular weight of 100,000. The cells contain about 1 microgram of proteoglycan/million cells. The proteoglycan is turned over within the cells in two apparent pools with half-lives of about 0.6 and 27 h, respectively. The fast pool represents secretion into medium in an apparently intact form, whereas the slow pool represents intracellular degradation to free chondroitin sulfate chains and smaller fragments. The proteoglycan contains a protein core with an apparent Mr on gel filtration and sodium dodecyl sulfate-polyacrylamide gel electrophoresis of about 20,000-30,000. To the core protein are attached an average of six or seven chondroitin sulfate chains, each with an Mr of about 10,000. The chondroitin sulfate chains contain approximately 85% 4-sulfated and approximately 15% nonsulfated disaccharides. The chondroitin sulfate attachment region of the core protein is essentially resistant to trypsin and elastase, whereas the remainder of the protein core is readily degraded by proteases. The size of the chondroitin sulfate attachment region peptide generated by trypsin was estimated to be approximately 5 kDa. Based on the molecular size, distribution of amino acids, protease susceptibility, and the extent of O-glycosylation, we propose that the intracellular proteoglycan characterized in this study is the translation product of a proteoglycan gene reported to be present in these cells (Stevens, R.L., Avraham, S., Gartner, M.C., Bruns, G.A., Austen, K.E., and Weis, J.H. (1988) J. Biol. Chem. 263, 7287-7291).  相似文献   

19.
cDNA encoding the precursor of rat liver medium chain acyl-CoA dehydrogenase (EC 1.3.99.3) was cloned and sequenced. The longest cDNA insert isolated was 1866 bases in length. This cDNA encodes the entire protein of 421-amino acids including a 25-amino acid leader peptide and a 396-amino acid mature polypeptide. The identity of the medium chain acyl-CoA dehydrogenase clone was confirmed by matching the amino acid sequence predicted from the cDNA to the NH2-terminal and nine internal tryptic peptide sequences derived from pure rat liver medium chain acyl-CoA dehydrogenase. The calculated molecular masses of the precursor medium chain acyl-CoA dehydrogenase, the mature medium chain acyl-CoA dehydrogenase, and the leader peptide are 46,600, 43,700, and 2,900 daltons, respectively. The leader peptide contains five basic amino acids and only one acidic amino acid; thus, it is positively charged, overall. Cysteine residues are unevenly distributed in the mature portion of the protein; five of six are found within the NH2-terminal half of the polypeptide. Comparison of medium chain acyl-CoA dehydrogenase sequence to other flavoproteins and enzymes which act on coenzyme A ester substrates did not lead to unambiguous identification of a possible FAD-binding site nor a coenzyme A-binding domain. The sequencing of other homologous acyl-CoA dehydrogenases will be informative in this regard.  相似文献   

20.
It has been previously shown that a single gene is used to encode the peptide core of the extracellular proteoglycan of rat L2 yolk sac tumor cells and the intracellular proteoglycan of rat basophilic leukemia (RBL)-1 cells. In order to determine if the predicted amino acid sequences of these proteoglycans are identical as well as to isolate a full length cDNA encoding a rat secretory granule proteoglycan, a cDNA library was prepared from RBL-1 cells and screened with the 165-base pair 5'----XmnI fragment of pPG-1, a partial cDNA which encodes the rat L2 cell proteoglycan peptide core. Based on the consensus nucleotide sequence of two full length RBL-1 cell-derived cDNAs, the 5' untranslated region of the mRNA that is expressed in RBL-1 cells is shorter than that expressed in the rat L2 cells although the coding regions of the mRNAs from the two cell types are identical. These findings indicate that the targeting of proteoglycans to an intracellular or extracellular compartment is a cell-specific event which is independent of the translated peptide core. Since the RBL-1 cell and the rat L2 cell proteoglycans have different types of glycosaminoglycans bound to them, it can also be concluded that the selection of the type of glycosaminoglycan that will be synthesized onto a peptide core is a cell-specific event which is not exclusively dependent on the translated peptide core. When the predicted amino acid sequence of the RBL-1 cell proteoglycan peptide core was compared to the predicted sequence of the homologous human molecule from HL-60 cells, 48% of the amino acids were identical. The N terminus was the most highly conserved area of the molecule. This region of the peptide core, which precedes the serine-glycine repeat region, is likely to be of critical importance for the biosynthesis and/or function of these proteoglycans. Analysis of 10 different mouse/hamster somatic cell hybrid lines with a SspI----3' fragment of the rat L2 cell cDNA revealed that, as in the human, the gene that encodes the mouse analogue of this peptide core resides on chromosome 10.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号