首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Inosine 5′-monophosphate dehydrogenase (IMPDH) catalyzes the rate-limiting step in the de novo GTP biosynthetic pathway and plays essential roles in cell proliferation. As a clinical target, IMPDH has been studied for decades, but it has only been within the last years that we are starting to understand the complexity of the mechanisms of its physiological regulation. Here, we report structural and functional insights into how adenine and guanine nucleotides control a conformational switch that modulates the assembly of the two human IMPDH enzymes into cytoophidia and allosterically regulates their catalytic activity. In vitro reconstituted micron-length cytoophidia-like structures show catalytic activity comparable to unassembled IMPDH but, in turn, are more resistant to GTP/GDP allosteric inhibition. Therefore, IMPDH cytoophidia formation facilitates the accumulation of high levels of guanine nucleotides when the cell requires it. Finally, we demonstrate that most of the IMPDH retinopathy-associated mutations abrogate GTP/GDP-induced allosteric inhibition and alter cytoophidia dynamics.  相似文献   

2.
Inosine monophosphate dehydrogenase (IMPDH), a rate-limiting enzyme in the de novo synthesis of guanine nucleotides, is a major therapeutic target. A prototypic uncompetitive inhibitor of IMPDH, mycophenolic acid (MPA), is the active form of mycophenolate mofeteil (CellCept), a widely used immunosuppressive drug. We have found that MPA interacts with intracellular IMPDH in vivo to alter its mobility on SDS-polyacrylamide gels. MPA also induces a striking conformational change in IMPDH protein in intact cells, resulting in the formation of annular aggregates of protein with concomitant inhibition of IMPDH activity. These aggregates are not associated with any known intracellular organelles and are reversible by incubating cells with guanosine, which repletes intracellular GTP, or with GTPgammaS. GTP also restores IMPDH activity. Treatment of highly purified IMPDH with MPA also results in the formation of large aggregates of protein, a process that is both prevented and reversed by the addition of GTP. Finally, GTP binds to IMPDH at physiologic concentrations, induces the formation of linear arrays of tetrameric protein, and prevents the aggregation of protein induced by MPA. We conclude that intracellular GTP acts as an antagonist to MPA by directly binding to IMPDH and reversing the conformational changes in the protein.  相似文献   

3.
Inosine monophosphate dehydrogenases (IMPDHs) are the committed step in de novo guanine nucleotide biosynthesis. There are two separate, but very closely related IMPDH isoenzymes, termed type I and type II. IMPDHs are widely believed to be major targets for cancer and transplantation therapy. Mycophenolic acid (MPA) is a potent inhibitor of IMPDHs. Previously, we found that MPA acted as a latent agonist of this nuclear hormone receptor in U2OS cells, and 6'-hydroxamic acid derivatives of MPA inhibited tubulin-specific histone deacetylase[s] (HDAC[s]) in HeLa cells. Although MPA is a promising lead compound, structure-activity relationships (SARs) for inhibition of IMPDH, and the mechanism action of MPA derivatives have not well been understood. We therefore synthesized, evaluated MPA derivatives as IMPDH inhibitor in vitro and cellular level, and explored their biological function and mechanism in cultured cells. This paper exhibits that (i) functional groups at C-5, C-7, and C-6' positions in MPA are important for inhibitory activity against IMPDH, (ii) it is difficult to improve specificity against IMPDH II by modification of 5-, 7-, and 6'-group, (iii) demethylation of 5-OMe results in increasing hydrophilicity, and lowering cell permeability, (iv) ester bonds of protective groups at C-7 and C-6' positions are hydrolyzed to give MPA in cultures, (v) the effects of a tubulin-specific HDAC[s] inhibitor on proliferation and differentiation are weaker than its inhibitory activity against IMPDH. The present work may provide insight into the development of a new class of drug lead for treating cancer and transplantation.  相似文献   

4.
Barnes BJ  Eakin AE  Izydore RA  Hall IH 《Biochemistry》2000,39(45):13641-13650
Inosine 5'-monophosphate dehydrogenase (IMPDH) is the rate-limiting enzyme in de novo purine biosynthesis. IMPDH activity results from expression of two isoforms. Type I is constitutively expressed and predominates in normal resting cells, while Type II is selectively up-regulated in neoplastic and replicating cells. Inhibitors of IMPDH activity selectively targeting the Type II isoform have great potential as cancer chemotherapeutic agents. For this study, an expression system was developed which yields 35-50 mg of soluble, purified recombinant Type I and II protein from 1 L of bacteria. In addition, three 1,5-diazabicyclo[3.1.0]hexane-2,4-diones were synthesized and shown to act as specific inhibitors of human recombinant Type II IMPDH. The agents are competitive inhibitors with respect to the endogenous substrate IMP and K(i) values range from 5 to 44 microM but were inactive as inhibitors of the Type I isoform at concentrations ranging from 0.5 to 500 microM. IC(50) values for recombinant Type II inhibition were determined and compared to IC(50) values obtained from Molt-4 cell extracts of IMPDH. Cytotoxicity assays revealed that the compounds inhibited Molt-4 leukemia growth with ED(50) values of 3.2-7.6 microM. Computational docking studies predict that the compounds bind to IMPDH in the IMP-binding site, although interactions with residues differ from those previously determined to interact with bound IMP. While all residues predicted to interact directly with the bound compounds are conserved in the Type I and Type II isoforms, sequence divergence within a helix adjacent to the active site may contribute to the observed selectivity for the human Type II isoform. These compounds represent the first class of selective IMPDH Type II inhibitors which may serve as lead compounds for the development of isoform-selective cancer chemotherapy.  相似文献   

5.
Purine nucleotide biosynthesis was studied in culture forms of Trypanosoma cruzi strain Y, Crithidia deanei (a reduviid trypanosomatid with an endosymbiote) and an aposymbiotic strain of C. deanei (obtained by curing C. deanei with chloramphenicol). Trypanosoma cruzi was found to synthesize purine nucleotides only fring incorporated into both adenine and guanine nucleotides. Similar results were obtained with guanine, indicating that this flagellate has a system for the interconversion of purine nucleotides. Crithidia deanei was able to synthesize purine and pyrimidine nucleotides from glycine ("de novo" pathway) and purine nucleotides from adenine and guanine ("salvage" pathway). Adenine was incorporated into both adenine and guanine nucleotides, while guanine was incorporated into guanine nucleotides only, indicating the presence of a metabolic block at the level of GMP reductase. The aposymbiotic C. deanei strain was unable to utilize glycine for the synthesis of purine nucleotides, although glycine was utilized for synthesizing pyrimidine nucleotides. These results suggest that the endosymbiote is implicated in the de novo purine nucleotide pathway of the C. deanei-endosymbiote complex. The incorporation of adenine and guanine by aposymbiotic C. deanei strain followed a pattern similar to that observed for C. deanei.  相似文献   

6.
Mycophenolic acid activation of p53 requires ribosomal proteins L5 and L11   总被引:1,自引:0,他引:1  
Mycophenolate mofetil (MMF), a prodrug of mycophenolic acid (MPA), is widely used as an immunosuppressive agent. MPA selectively inhibits inosine monophosphate dehydrogenase (IMPDH), a rate-limiting enzyme for the de novo synthesis of guanine nucleotides, leading to depletion of the guanine nucleotide pool. Its chemotherapeutic effects have been attributed to its ability to induce cell cycle arrest and apoptosis. MPA treatment has also been shown to induce and activate p53. However, the mechanism underlying the p53 activation pathway is still unclear. Here, we show that MPA treatment results in inhibition of pre-rRNA synthesis and disruption of the nucleolus. This treatment enhances the interaction of MDM2 with L5 and L11. Interestingly, knockdown of endogenous L5 or L11 markedly impairs the induction of p53 and G(1) cell cycle arrest induced by MPA. These results suggest that MPA may trigger a nucleolar stress that induces p53 activation via inhibition of MDM2 by ribosomal proteins L5 and L11.  相似文献   

7.
8.
Long H  Cameron S  Yu L  Rao Y 《Genetics》2006,172(3):1633-1642
Guanine nucleotides are key players in mediating growth-cone signaling during neural development. The supply of cellular guanine nucleotides in animals can be achieved via the de novo synthesis and salvage pathways. The de novo synthesis of guanine nucleotides is required for lymphocyte proliferation in animals. Whether the de novo synthesis pathway is essential for any other cellular processes, however, remains unknown. In a search for genes required for the establishment of neuronal connectivity in the fly visual system, we identify the burgundy (bur) gene as an essential player in photoreceptor axon guidance. The bur gene encodes the only GMP synthetase in Drosophila that catalyzes the final reaction of de novo GMP synthesis. Loss of bur causes severe defects in axonal fasciculation, retinotopy, and growth-cone morphology, but does not affect photoreceptor differentiation or retinal patterning. Similar defects were observed when the raspberry (ras) gene, encoding for inosine monophosphate dehydrogenase catalyzing the IMP-to-XMP conversion in GMP de novo synthesis, was mutated. Our study thus provides the first in vivo evidence to support an essential and specific role for de novo synthesis of guanine nucleotides in axon guidance.  相似文献   

9.
The overall activity of the purine de novo synthesis pathway and the activities of purine phosphoribosyltransferase in the rat testis were measured at different ages and were correlated with histological observations. Similar studies of the concentration of circulating gonadotrophins and testosterone were performed. The purine phosphoribosyltransferase activities were between two and three orders of magnitude greater than purine de novo synthesis. The peak activity of the purine de novo synthesis pathway coincided with the first appearance of meiosis in the spermatocytes immediately before the luteinising hormone (LH) level rose to its peak. The highest activity of the hypoxanthine phosphoribosyltransferase (HPRT; EC 2.4.2.8) - catalysed purine salvage pathway coincided with the first appearance of mature spermatozoa in the tubules just after the occurrence of peak levels of follicle-stimulating hormone (FSH). These findings are linked to the development of testicular atrophy in cases of severe HPRT deficiency in man.  相似文献   

10.
Two prominent domains have been identified in the X-ray crystal structure of inosine-5'-monophosphate dehydrogenase (IMPDH), a core domain consisting of an alpha/beta barrel which contains the active site and an inserted subdomain whose structure is less well defined. The core domain encompassing amino acids 1-108 and 244-514 of wild-type human IMPDH (II) connected by the tetrapeptide linker Ile-Arg-Thr-Gly was expressed. The subdomain including amino acids 99-244 of human wild-type IMPDH (II) was expressed as a His-tagged fusion protein, where the His-tag was removable by enterokinase cleavage. These two proteins as well as wild-type human IMPDH (II), all proteins expressed in Escherichia coli, have been purified to apparent homogeneity. Both the wild-type and core domain proteins are tetrameric and have very similar enzymatic activities. In contrast, the subdomain migrates as a monomer or dimer on a gel filtration column and lacks enzymatic activity. Circular dichroism spectropolarimetry indicates that the core domain retains secondary structure very similar to full-length IMPDH, with 30% alpha-helix and 30% beta-sheet vs 33% alpha-helix and 29% beta-sheet for wild-type protein. Again, the subdomain protein is distinguished from both wild-type and core domain proteins by its content of secondary structure, with only 15% each of alpha-helix and beta-sheet. These studies demonstrate that the core domain of IMPDH expressed separately is both structurally intact and enzymatically active. The availability of the modules of IMPDH will aid in dissecting the architecture of this enzyme of the de novo purine nucleotide biosynthetic pathway, which is an important target for immunosuppressive and antiviral drugs.  相似文献   

11.
12.
In this paper, we show that in vitro xanthosine does not enter any of the pathways known to salvage the other three main natural purine nucleosides: guanosine; inosine; and adenosine. In rat brain extracts and in intact LoVo cells, xanthosine is salvaged to XMP via the phosphotransferase activity of cytosolic 5'-nucleotidase. IMP is the preferred phosphate donor (IMP + xanthosine --> XMP + inosine). XMP is not further phosphorylated. However, in the presence of glutamine, it is readily converted to guanyl compounds. Thus, phosphorylation of xanthosine by cytosolic 5'-nucleotidase circumvents the activity of IMP dehydrogenase, a rate-limiting enzyme, catalyzing the NAD(+)-dependent conversion of IMP to XMP at the branch point of de novo nucleotide synthesis, thus leading to the generation of guanine nucleotides. Mycophenolic acid, an inhibitor of IMP dehydrogenase, inhibits the guanyl compound synthesis via the IMP dehydrogenase pathway but has no effect on the cytosolic 5'-nucleotidase pathway of guanine nucleotides synthesis. We propose that the latter pathway might contribute to the reversal of the in vitro antiproliferative effect exerted by IMP dehydrogenase inhibitors routinely seen with repletion of the guanine nucleotide pools.  相似文献   

13.
Distinct requirements for IFNs and STAT1 in NK cell function   总被引:9,自引:0,他引:9  
NK cell functions were examined in mice with a targeted mutation of the STAT1 gene, an essential mediator of IFN signaling. Mice deficient in STAT1 displayed impaired basal NK cytolytic activity in vitro and were unable to reject transplanted tumors in vivo, despite the presence of normal numbers of NK cells. IL-12 enhanced NK-mediated cytolysis, but poly(I:C) did not, and a similar phenotype occurred in mice lacking IFNalpha receptors. Molecules involved in activation and lytic function of NK cells (granzyme A, granzyme B, perforin, DAP10, and DAP12) were expressed at comparable levels in both wild-type and STAT1(-/-) mice, and serine esterase activity necessary for CTL function was normal, showing that the lytic machinery was intact. NK cells with normal cytolytic activity could be derived from STAT1(-/-) bone marrow progenitors in response to IL-15 in vitro, and enhanced NK lytic activity and normal levels of IFN-gamma were produced in response to IL-12 treatment in vivo. Despite these normal responses to cytokines, STAT1(-/-) mice could not reject the NK-sensitive tumor RMA-S, even following IL-12 treatment in vivo. Whereas in vitro NK cytolysis was also reduced in mice lacking both type I and type II IFN receptors, these mice resisted tumor challenge. These results demonstrate that both IFN-alpha and IFN-gamma are required to maintain NK cell function and define a STAT1-dependent but partially IFN-independent pathway required for NK-mediated antitumor activity.  相似文献   

14.
A purine nucleotide (inosinate) cycle is demonstrated with human lymphoblasts. The lymphoblast requires approximately 50 nmol of purine/10(6) cell increment. When the inosinate cycle is interrupted by the genetic, severe deficiency of either or both purine nucleoside phosphorylase (PNP) or hypoxanthine phosphoribosyltransferase (HPRT), purine accumulates in the culture medium as inosine, guanosine, deoxyinosine, and deoxyguanosine (PNP deficiency or PNP, HPRT deficiency) or hypoxanthine and guanine (HPRT deficiency). This accumulation represents an additional 25 to 32 nmol of purine which must be synthesized per 10(6) cell increment. PNP-deficient lymphoblasts have PPRibP contents characteristic of normal lymphoblasts, about 20 to 25 pmol/10(6) cells. HPRT-deficient lymphoblasts have four times higher PPRibP contents. The lymphoblast deficient for both PNP and HPRT has only a marginal elevation of PPRibP content, 1.5 times normal values. The elevated PPRibP content of HPRT-deficient cells reflects the efficient, unilateral reutilization of the ribose moiety of purine ribonucleotides and is not a cause of purine overproduction. Purine overproduction characterizing PNP-deficient lymphoblasts appears similar to overproduction from deficiency of HPRT, i.e. a break in the inosinate cycle rather than overactive de novo purine synthesis.  相似文献   

15.
The oxidation of IMP to XMP is the rate-limiting step in the de novo synthesis of guanine ribonucleotides. This NAD-dependent reaction is catalyzed by the enzyme inosine monophosphate dehydrogenase (IMPDH). Based upon the recent structural determination of IMPDH complexed to oxidized IMP (XMP*) and the potent uncompetitive inhibitor mycophenolic acid (MPA), we have selected active site residues and prepared mutants of human type II IMPDH. The catalytic parameters of these mutants were determined. Mutations G326A, D364A, and the active site nucleophile C331A all abolish enzyme activity to less than 0.1% of wild type. These residues line the IMP binding pocket and are necessary for correct positioning of the substrate, Asp364 serving to anchor the ribose ring of the nucleotide. In the MPA/NAD binding site, significant loss of activity was seen by mutation of any residue of the triad Arg322, Asn303, Asp274 which form a hydrogen bonding network lining one side of this pocket. From a model of NAD bound to the active site consistent with the mutational data, we propose that these resides are important in binding the ribose ring of the nicotinamide substrate. Additionally, mutations in the pair Thr333, Gln441, which lies close to the xanthine ring, cause a significant drop in the catalytic activity of IMPDH. It is proposed that these residues serve to deliver the catalytic water molecule required for hydrolysis of the cysteine-bound XMP* intermediate formed after oxidation by NAD.  相似文献   

16.
K Pillwein  H N Jayaram  G Weber 《Blut》1988,57(2):97-100
Antineoplastic activity of tiazofurin (2-beta-D-ribofuranosylthiazole-4-carboxamide) is mediated by an anabolite of the drug thiazole-4-carboxamide adenine dinucleotide (TAD), an analog of NAD which inhibits IMP dehydrogenase activity resulting in the depletion of guanylate pools and cell death. Human chronic myelogenous leukemia K 562 cells were found to be sensitive to tiazofurin with an IC50 of 19.2 microM. TAD content in K 562 cells (1.3 nmol/10(9)/h) was in the range found in susceptible murine and human tumor cells. Studies were conducted to relate tiazofurin toxicity with biochemical effects by examining nucleotide pools. Among the nucleotides, only guanylate pools were significantly depleted by the drug. To further study the effect of the drug on the purine nucleotide de novo and salvage biosynthetic pathways, flux of radiolabelled formate and guanine was employed. The results showed that de novo synthesis of guanylates was curtailed primarily by the drug's action without influencing adenylate biosynthesis or salvage of guanine to guanylates. These studies show that K 562 cells are sensitive to selective inhibition of de novo guanylate pathway indicating that human chronic myelogenous leukemia in blast crisis might be a good candidate for Phase II clinical trials with tiazofurin.  相似文献   

17.
J Allsop  R W Watts 《Enzyme》1990,43(3):155-159
Extreme degrees of hypoxanthine phosphoribosyltransferase (HPRT) deficiency in man are associated with gross sex-linked neurological dysfunction, gout and urinary stones (the Lesch-Nyhan or 'complete HPRT-deficiency' syndrome). The less severe degrees of enzyme deficiency (sex-linked recessive gout and/or urolithiasis or the 'partial HPRT-deficiency' syndrome) may be associated with minor neurological manifestations. Whole body purine synthesis de novo is accelerated in both these groups of patients. A strain of mice with an experimentally produced mutation at the HPRT locus showed some residual 'apparent HPRT activity' in brain, liver, testicular, splenic, kidney and ovarian tissues but not in erythrocyte haemolysates. The mutation removes exons 1 and 2 of the coding region of the gene together with the promotor and about 10 kb of upstream sequence from the gene. It is therefore possible that the observed 'apparent HPRT activity' in these mice is due to the operation of an alternative metabolic pathway. Purine synthesis de novo was markedly accelerated in their brain, testicular, splenic and kidney tissues. It was not accelerated in the liver tissue of male mice hemizygous for the mutation and the degree of acceleration in the female homozygotes only just reached statistical significance at the p = 0.02 level. This observation casts doubt on the importance of modulations in the rate of hepatic purine synthesis de novo as a mechanism for maintaining a steady supply of purines for translocation to other organs.  相似文献   

18.
Hypoxanthine is present in preparations of follicular fluid and has been shown to suppress the spontaneous meiotic maturation of mammalian oocytes in vitro. The present experiments examined the possible role of hypoxanthine metabolism in mediating this meiotic arrest. Four putative inhibitors of the enzyme, hypoxanthine phosphoribosyltransferase (HPRT), which metabolizes hypoxanthine to inosine monophosphate, were tested on lysates of oocyte-cumulus cell complexes. At a concentration of 1 mM, 6-mercapto-9-(tetrahydro-2-furyl)-purine (MPTF) and 6-mercaptopurine (6-MP) suppressed enzymatic activity by 86% and 98%, respectively, while 6-azauridine and 2,6-bis-(hydroxyamino)-9-β-D-ribofuranosyl-purine had no effect. MPTF and 6-MP increased the inhibitory effect of hypoxanthine on germinal vesicle breakdown, but the other agents did not. The 2 active agents had similar effects on salvage activity and hypoxanthine-maintained meiotic arrest in denuded oocytes. Also, oocytes from XO mice were more sensitive to the meiosis-arresting action of hypoxanthine than oocytes from XX littermates, which have twice the HPRT activity. The actions of the HPRT inhibitors were not due to their conversion to nucleotides via HPRT and negative feedback on purine de novo synthesis, because azaserine and 6-methylmercaptopurine riboside, which are more potent inhibitors of de novo synthesis, had a stimulatory, rather than inhibitory, effect on hypoxanthine-arrested oocytes. Furthermore, several lines of evidence indicate that metabolism of hypoxanthine to xanthine and uric acid by xanthine oxidase does not mediate the inhibitory action of this purine base on meiotic maturation. The data therefore suggest that nonmetabolized hypoxanthine is responsible for the meiotic arrest observed, most likely through suppression of cAMP degradation. © 1993 Wiley-Liss, Inc.  相似文献   

19.
In the present study we identify inosine-5' monophosphate dehydrogenase (IMPDH), a key enzyme in de novo guanine nucleotide biosynthesis, as a novel lipid body-associated protein. To identify new targets of insulin we performed a comprehensive 2-DE analysis of (32)P-labelled proteins isolated from 3T3-L1 adipocytes (Hill et al. J Biol Chem 2000; 275: 24313-24320). IMPDH was identified by liquid chromatography/tandem mass spectrometry as a protein which was phosphorylated in a phosphatidylinositol (PI) 3-kinase-dependent manner upon insulin treatment. Although insulin had no significant effect on IMPDH activity, we observed translocation of IMPDH to lipid bodies following insulin treatment. Induction of lipid body formation with oleic acid promoted dramatic redistribution of IMPDH to lipid bodies, which appeared to be in contact with the endoplasmic reticulum, the site of lipid body synthesis and recycling. Inhibition of PI 3-kinase blocked insulin- and oleate-induced translocation of IMPDH and reduced oleate-induced lipid accumulation. However, we found no evidence of oleate-induced IMPDH phosphorylation, suggesting phosphorylation and translocation may not be coupled events. These data support a role for IMPDH in the dynamic regulation of lipid bodies and fatty acid metabolism and regulation of its activity by subcellular redistribution in response to extracellular factors that modify lipid metabolism.  相似文献   

20.
The synthesis, interconversion, and catabolism of purine bases, ribonucleosides, and ribonucleotides in wild-type Saccharomyces cerevisiae were studied by measuring the conversion of radioactive adenine, hypoxanthine, guanine, and glycine into acid-soluble purine bases, ribonucleosides, and ribonucleotides, and into nucleic acid adenine and guanine. The pathway(s) by which adenine is converted to inosinate is (are) uncertain. Guanine is extensively deaminated to xanthine. In addition, some guanine is converted to inosinate and adenine nucleotides. Inosinate formed either from hypoxanthine or de novo is readily converted to adenine and guanine nucleotides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号