首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
About 6000 contact regions (patches) of helix-to-helix packing from 300 well-resolved non-homologous protein structures were considered. The patches were defined by the spatial helical neighbors and were estimated in atomic detail using a variable distance criterion. The following questions are addressed. (1) Are the amino acid preferences and atomic composition of distinct types of helical patches indicative for the type of their neighbor? Distributions of size, atomic composition and packing density are compared for different types of helical interfaces. Thereby contact preferences are derived for parts of secondary structures adjoining each other or pointing towards the solvent. (2) Is it possible to cluster helical patches according to their structural similarity? For these purposes the patches were classified with an automatic sequence-independent superposition procedure which yields a distinctively reduced set of representative interfaces. On this basis, the methodology for finding exchangeable patches in different proteins is demonstrated.  相似文献   

2.
Many proteins function by interacting with other small molecules (ligands). Identification of ligand‐binding sites (LBS) in proteins can therefore help to infer their molecular functions. A comprehensive comparison among local structures of LBSs was previously performed, in order to understand their relationships and to classify their structural motifs. However, similar exhaustive comparison among local surfaces of LBSs (patches) has never been performed, due to computational complexity. To enhance our understanding of LBSs, it is worth performing such comparisons among patches and classifying them based on similarities of their surface configurations and electrostatic potentials. In this study, we first developed a rapid method to compare two patches. We then clustered patches corresponding to the same PDB chemical component identifier for a ligand, and selected a representative patch from each cluster. We subsequently exhaustively as compared the representative patches and clustered them using similarity score, PatSim. Finally, the resultant PatSim scores were compared with similarities of atomic structures of the LBSs and those of the ligand‐binding protein sequences and functions. Consequently, we classified the patches into ~2000 well‐characterized clusters. We found that about 63% of these clusters are used in identical protein folds, although about 25% of the clusters are conserved in distantly related proteins and even in proteins with cross‐fold similarity. Furthermore, we showed that patches with higher PatSim score have potential to be involved in similar biological processes.  相似文献   

3.
Rangwala H  Karypis G 《Proteins》2008,72(3):1005-1018
The effectiveness of comparative modeling approaches for protein structure prediction can be substantially improved by incorporating predicted structural information in the initial sequence-structure alignment. Motivated by the approaches used to align protein structures, this article focuses on developing machine learning approaches for estimating the RMSD value of a pair of protein fragments. These estimated fragment-level RMSD values can be used to construct the alignment, assess the quality of an alignment, and identify high-quality alignment segments. We present algorithms to solve this fragment-level RMSD prediction problem using a supervised learning framework based on support vector regression and classification that incorporates protein profiles, predicted secondary structure, effective information encoding schemes, and novel second-order pairwise exponential kernel functions. Our comprehensive empirical study shows superior results compared with the profile-to-profile scoring schemes. We also show that for protein pairs with low sequence similarity (less than 12% sequence identity) these new local structural features alone or in conjunction with profile-based information lead to alignments that are considerably accurate than those obtained by schemes that use only profile and/or predicted secondary structure information.  相似文献   

4.
Quantitative measures are presented for comparing the conformations of two molecular ensembles. The measures are based on Kabsch's formula for the root-mean-square deviation (RMSD) and the covariance matrix of atomic positions of isotropically distributed ensembles (IDE). By using a Taylor series expansion, it is shown that the RMSD can be expressed solely in terms of the IDE matrices. A fast approximate method is introduced for the pairwise RMSD determination whose computational cost scales linearly with the number of structures. A similarity measure for two structural ensembles that is based on the trace metric of the differences of powers of the IDE matrices is presented. The measures are illustrated for conformational ensembles generated by a molecular dynamics computer simulation of a partially folded A-state analog of ubiquitin.  相似文献   

5.
The ribosome is a large molecular complex that consists of at least three ribonucleic acid molecules and a large number of proteins. It translates genetic information from messenger ribonucleic acid and makes protein accordingly. To better understand ribosomal function and provide information for designing biochemical experiments require knowledge of the complete structure of the ribosome. For expanding the structural information of the ribosome, we took on the challenge of developing a detailed Thermus thermophilus ribosomal structure computationally. By combining information derived from the low-resolution x-ray structure of the 70S ribosome (providing the overall fold), high-resolution structures of the ribosomal subunits (providing the local structure), sequences, and secondary structures, we have developed an atomic model of the T. thermophilus ribosome using a homology modeling approach. Our model is stereochemically sound with a consistent single-species sequence. The overall folds of the three ribosomal ribonucleic acids in our model are consistent with those in the low-resolution crystal structure (root mean-square differences are all <1.9 Å). The large overall interface area (~2500 Å2) of intersubunit bridges B2a, B3, and B5, and the inherent flexibility in regions connecting the contact residues are consistent with these bridges serving as anchoring patches for the ratcheting and rolling motions between the two subunits during translocation.  相似文献   

6.
We explore the effect of land‐use change from extensively used grasslands to intensified silvi‐ and agricultural monocultures on metacommunity structure of native forests in Uruguay. We integrated methods from metacommunity studies, remote sensing, and landscape ecology to explore how woody species distribution was influenced by land‐use change from local to regional scale. We recorded richness and composition of adult and juvenile woody species from 32 native forests, created land‐use maps from satellite image to calculate spatial metrics at landscape, class, and patch levels. We also analyzed the influence of land use pattern, climate, topography, and geographic distance between sites (d) on metacommunity, and created maps to visualize species richness and (dis)similarity between communities across the country. Woody species communities were distributed in a discrete pattern across Uruguay. Precipitation and temperature seasonality shaped species distribution pattern. Species richness and community dissimilarity increased from West to East. Latitude did not influence these patterns. Number of patches, landscape complexity, and interspersion and juxtaposition indexes determine woody species distribution at landscape level. Increasing areas covered by crops and timber plantation reduced species richness and increased community dissimilarity. The spatial metrics of native forest fragments at patch level did not influence metacommunity structure, species richness, and community dissimilarity. In conclusion, Uruguayan native forests display a high range of dissimilarity. Pressure of neighborhood land uses was the predominant factor for species assemblages. Conserving landscape structures that assure connectivity within and among native forest patches is crucial. On sites with rare target species, the creation of alliances between governmental institution and landowner complemented by incentives for biodiversity conservation provides opportunities to advance in species protection focused on those less tolerant to land‐use change.  相似文献   

7.

Background  

Owing to rapid expansion of protein structure databases in recent years, methods of structure comparison are becoming increasingly effective and important in revealing novel information on functional properties of proteins and their roles in the grand scheme of evolutionary biology. Currently, the structural similarity between two proteins is measured by the root-mean-square-deviation (RMSD) in their best-superimposed atomic coordinates. RMSD is the golden rule of measuring structural similarity when the structures are nearly identical; it, however, fails to detect the higher order topological similarities in proteins evolved into different shapes. We propose new algorithms for extracting geometrical invariants of proteins that can be effectively used to identify homologous protein structures or topologies in order to quantify both close and remote structural similarities.  相似文献   

8.
The root mean square deviation (RMSD) and the least RMSD are two widely used similarity measures in structural bioinformatics. Yet, they stem from global comparisons, possibly obliterating locally conserved motifs. We correct these limitations with the so-called combined RMSD, which mixes independent lRMSD measures, each computed with its own rigid motion. The combined RMSD is relevant in two main scenarios, namely to compare (quaternary) structures based on motifs defined from the sequence (domains and SSE) and to compare structures based on structural motifs yielded by local structural alignment methods. We illustrate the benefits of combined RMSD over the usual RMSD on three problems, namely (a) the assignment of quaternary structures for hemoglobin (scenario #1), (b) the calculation of structural phylogenies (case study: class II fusion proteins; scenario #1), and (c) the analysis of conformational changes based on combined RMSD of rigid structural motifs (case study: one class II fusion protein; scenario #2). Based on these illustrations, we argue that the combined RMSD is a tool of choice to perform positive and negative discrimination of degree of freedom, with applications to the design of move sets and collective coordinates. Executables to compute combined RMSD are available within the Structural Bioinformatics Library ( http://sbl.inria.fr ).  相似文献   

9.
The combination of high-resolution atomic force microscopy (AFM) imaging and single-molecule force-spectroscopy was employed to unfold single bacteriorhodopsins (BR) from native purple membrane patches at various physiologically relevant temperatures. The unfolding spectra reveal detailed insight into the stability of individual structural elements of BR against mechanical unfolding. Intermittent states in the unfolding process are associated with the stepwise unfolding of alpha-helices, whereas other states are associated with the unfolding of polypeptide loops connecting the alpha-helices. It was found that the unfolding forces of the secondary structures considerably decreased upon increasing the temperature from 8 to 52 degrees C. Associated with this effect, the probability of individual unfolding pathways of BR was significantly influenced by the temperature. At lower temperatures, transmembrane alpha-helices and extracellular polypeptide loops exhibited sufficient stability to individually establish potential barriers against unfolding, whereas they predominantly unfolded collectively at elevated temperatures. This suggests that increasing the temperature decreases the mechanical stability of secondary structural elements and changes molecular interactions between secondary structures, thereby forcing them to act as grouped structures.  相似文献   

10.
The increasing number of solved protein structures provides a solid number of interfaces, if protein-protein interactions, domain-domain contacts, and contacts between biological units are taken into account. An interface library gives us the opportunity to identify surface regions on a target molecule that are similar by local structure and residue composition. If both unbound components of a possible protein complex exhibit structural similarities to a known interface, the unbound structures can be superposed onto the known interfaces. The approach is accompanied by two mathematical problems. Protein surfaces have to be quickly screened by thousands of patches, and similarity has to be evaluated by a suitable scoring scheme. The used algorithm (NeedleHaystack) identifies similar patches within minutes. Structurally related sites are recognized even if only parts of the template patches are structurally related to the interface region. A successful prediction of the protein complex depends on a suitable template of the library. However, the performed tests indicate that interaction sites are identified even if the similarity is very low. The approach complements existing ab initio methods and provides valuable results on standard benchmark sets.  相似文献   

11.
Fan H  Periole X  Mark AE 《Proteins》2012,80(7):1744-1754
The efficiency of using a variant of Hamiltonian replica‐exchange molecular dynamics (Chaperone H‐replica‐exchange molecular dynamics [CH‐REMD]) for the refinement of protein structural models generated de novo is investigated. In CH‐REMD, the interaction between the protein and its environment, specifically, the electrostatic interaction between the protein and the solvating water, is varied leading to cycles of partial unfolding and refolding mimicking some aspects of folding chaperones. In 10 of the 15 cases examined, the CH‐REMD approach sampled structures in which the root‐mean‐square deviation (RMSD) of secondary structure elements (SSE‐RMSD) with respect to the experimental structure was more than 1.0 Å lower than the initial de novo model. In 14 of the 15 cases, the improvement was more than 0.5 Å. The ability of three different statistical potentials to identify near‐native conformations was also examined. Little correlation between the SSE‐RMSD of the sampled structures with respect to the experimental structure and any of the scoring functions tested was found. The most effective scoring function tested was the DFIRE potential. Using the DFIRE potential, the SSE‐RMSD of the best scoring structures was on average 0.3 Å lower than the initial model. Overall the work demonstrates that targeted enhanced‐sampling techniques such as CH‐REMD can lead to the systematic refinement of protein structural models generated de novo but that improved potentials for the identification of near‐native structures are still needed. Proteins 2012; © 2012 Wiley Periodicals, Inc.  相似文献   

12.
MOTIVATION: Should reports on molecular mimicry in particular cases, e.g. responsible for cross-reactivity, be considered as accidental or as a general principle in protein evolution? To answer this question, two types of similarity have to be considered: those in homologues (synonyms) and resemblance between patches from unrelated proteins (homonyms). RESULTS: All interfaces from known protein structures were collected in a comprehensive data bank [Dictionary of Interfaces in Proteins (DIP)]. A fast, sequence-independent, three-dimensional superposition procedure was developed to search automatically for geometrically similar surface areas. Surprisingly, we found a large number of structurally similar interfaces on the surface of unrelated proteins. Even patches from different types of secondary structure were found resembling each other. The putative functional meaning of homonyms is demonstrated with striking examples.  相似文献   

13.
Three-dimensional protein structures can be described with a library of 3D fragments that define a structural alphabet. We have previously proposed such an alphabet, composed of 16 patterns of five consecutive amino acids, called Protein Blocks (PBs). These PBs have been used to describe protein backbones and to predict local structures from protein sequences. The Q16 prediction rate reaches 40.7% with an optimization procedure. This article examines two aspects of PBs. First, we determine the effect of the enlargement of databanks on their definition. The results show that the geometrical features of the different PBs are preserved (local RMSD value equal to 0.41 A on average) and sequence-structure specificities reinforced when databanks are enlarged. Second, we improve the methods for optimizing PB predictions from sequences, revisiting the optimization procedure and exploring different local prediction strategies. Use of a statistical optimization procedure for the sequence-local structure relation improves prediction accuracy by 8% (Q16 = 48.7%). Better recognition of repetitive structures occurs without losing the prediction efficiency of the other local folds. Adding secondary structure prediction improved the accuracy of Q16 by only 1%. An entropy index (Neq), strongly related to the RMSD value of the difference between predicted PBs and true local structures, is proposed to estimate prediction quality. The Neq is linearly correlated with the Q16 prediction rate distributions, computed for a large set of proteins. An "expected" prediction rate QE16 is deduced with a mean error of 5%.  相似文献   

14.
A structural database of 11 families of chains differing by a single amino acid substitution has been built. Another structural dataset of 5 families with identical sequences has been used for comparison. The RMSD computed after a global superimposition of the mutated protein on each native one is smaller than the RMSD calculated among proteins of identical sequences. The effect of the perturbation is very local, and not necessarily the highest at the position of the mutation. A RMSD between mutated and native proteins is computed over a 3‐residue or a 7‐residue window at each position. To separate the effects of structural fluctuations due to point mutations from other sources, pair RMSD have been translated into P values which themselves are included in a score called P‐RANK. This score allows highlighting small backbone distortions by comparing these RMSD between mutated and native positions to the RMSD at the same positions in the absence of a mutation. It results from the P‐RANK that 38% of all mutations produce a significant effect on the displacement. When compared with a random distribution of RMSD at un‐mutated positions, we show that, even if the RMSD is greater when the mutation is in loops than in regular secondary structure, the relative effect is more important for regular secondary structures and for buried positions. We confirm the absence of correlation between RMSD and the predicted variation of free energy of folding but we found a small correlation between high RMSD and the error in the prediction of ΔΔG.  相似文献   

15.
Hydrophobic patches, defined as clusters of neighboring apolar atoms deemed accessible on a given protein surface, have been investigated on protein subunit interfaces. The data were taken from known tertiary structures of multimeric protein complexes. Amino acid composition and preference, patch size distribution, and patch contact complementarity across associating subunits were examined and compared with hydrophobic patches found on the solvent-accessible surface of the multimeric complexes. The largest or second largest patch on the accessible surface of the entire subunit was involved in multimeric interfaces in 90% of the cases. These results should prove useful for subunit design and engineering as well as for prediction of subunit interface regions. Proteins 28:333–343, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

16.
As modeling of changes in backbone conformation still lacks a computationally efficient solution, we developed a discretisation of the conformational states accessible to the protein backbone similar to the successful rotamer approach in side chains. The BriX fragment database, consisting of fragments from 4 to 14 residues long, was realized through identification of recurrent backbone fragments from a non-redundant set of high-resolution protein structures. BriX contains an alphabet of more than 1,000 frequently observed conformations per peptide length for 6 different variation levels. Analysis of the performance of BriX revealed an average structural coverage of protein structures of more than 99% within a root mean square distance (RMSD) of 1 Angstrom. Globally, we are able to reconstruct protein structures with an average accuracy of 0.48 Angstrom RMSD. As expected, regular structures are well covered, but, interestingly, many loop regions that appear irregular at first glance are also found to form a recurrent structural motif, albeit with lower frequency of occurrence than regular secondary structures. Larger loop regions could be completely reconstructed from smaller recurrent elements, between 4 and 8 residues long. Finally, we observed that a significant amount of short sequences tend to display strong structural ambiguity between alpha helix and extended conformations. When the sequence length increases, this so-called sequence plasticity is no longer observed, illustrating the context dependency of polypeptide structures.  相似文献   

17.
An automatic procedure for building a protein polyalanine backbone from C alpha positions and 'spare parts' retrieved from a data base of 66 high-resolution protein structures is described. Protein backbones are constructed from overlapping fragments of variable length, which allows the backbone of regular secondary structure elements to be built in one block. The procedure is shown to yield backbones which compare very favourably with those from highly refined X-ray structures (r.m.s. deviation between generated and crystal structures less than 1A). The method is furthermore quite insensitive to experimental errors in C alpha positions as well as to the size of the data base, and is seen to yield valuable insight into the relationships between sequence and 3-D structure: one example on triose phosphate isomerase, a beta-barrel protein, shows that beta alpha loops can be considered as structurally more uncommon than alpha beta loops. The 'spare parts' approach is also found to be useful for general-purpose modelling of local structural changes produced by insertion or deletion of residues. It should, however, be used with caution. Crude selection criteria based solely on fragment length and geometric fit to the loop base regions yield realistic backbones in about two-thirds of the test cases (r.m.s. deviations from refined crystal structure approximately 1A). In the remaining cases, sequence information, in particular the presence of glycine residues which tend to adopt more unusual backbone conformations, must be considered to obtain comparable results.  相似文献   

18.
Several studies based on the known three-dimensional (3-D) structures of proteins show that two homologous proteins with insignificant sequence similarity could adopt a common fold and may perform same or similar biochemical functions. Hence, it is appropriate to use similarities in 3-D structure of proteins rather than the amino acid sequence similarities in modelling evolution of distantly related proteins. Here we present an assessment of using 3-D structures in modelling evolution of homologous proteins. Using a dataset of 108 protein domain families of known structures with at least 10 members per family we present a comparison of extent of structural and sequence dissimilarities among pairs of proteins which are inputs into the construction of phylogenetic trees. We find that correlation between the structure-based dissimilarity measures and the sequence-based dissimilarity measures is usually good if the sequence similarity among the homologues is about 30% or more. For protein families with low sequence similarity among the members, the correlation coefficient between the sequence-based and the structure-based dissimilarities are poor. In these cases the structure-based dendrogram clusters proteins with most similar biochemical functional properties better than the sequence-similarity based dendrogram. In multi-domain protein families and disulphide-rich protein families the correlation coefficient for the match of sequence-based and structure-based dissimilarity (SDM) measures can be poor though the sequence identity could be higher than 30%. Hence it is suggested that protein evolution is best modelled using 3-D structures if the sequence similarities (SSM) of the homologues are very low.  相似文献   

19.
20.
Jung HJ  Kim S  Kim YJ  Kim MK  Kang SG  Lee JH  Kim W  Cha SS 《Molecules and cells》2012,33(2):163-171
The DJ-1 superfamily (DJ-1/ThiJ/PfpI superfamily) is distributed across all three kingdoms of life. These proteins are involved in a highly diverse range of cellular functions, including chaperone and protease activity. DJ-1 proteins usually form dimers or hexamers in vivo and show at least four different binding orientations via distinct interface patches. Abnormal oligomerization of human DJ-1 is related to neurodegenerative disorders including Parkinson’s disease, suggesting important functional roles of quaternary structures. However, the quaternary structures of the DJ-1 superfamily have not been extensively studied. Here, we focus on the diverse oligomerization modes among the DJ-1 superfamily proteins and investigate the functional roles of quaternary structures both computationally and experimentally. The oligomerization modes are classified into 4 types (DJ-1, YhbO, Hsp, and YDR types) depending on the distinct interface patches (I-IV) upon dimerization. A unique, rotated interface via patch I is reported, which may potentially be related to higher order oligomerization. In general, the groups based on sequence similarity are consistent with the quaternary structural classes, but their biochemical functions cannot be directly inferred using sequence information alone. The observed phyletic pattern suggests the dynamic nature of quaternary structures in the course of evolution. The amino acid residues at the interfaces tend to show lower mutation rates than those of non-interfacial surfaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号