首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Apoptosis-Like Cell Death in Barley Roots under Salt Stress   总被引:34,自引:0,他引:34  
Salt stress-induced cell death was investigated in barley roots.Cleavage of nuclear DNA was observed 1 h after salt stress.Oligonucleosomal fragments of DNA were detected electrophoretically8 h after salt stress. These phenomena indicate that apoptosis-likecell death can occur under salt stress. (Received February 12, 1997; Accepted July 3, 1997)  相似文献   

2.
The 26 kilodalton, isoelectric point 6.3 and 6.5 (Gs1 and Gs2) polypeptides that increase in barley (Hordeum vulgare L.) roots during salt stress were isolated and identified. Both Gs1 and Gs2 had high sequence similarity to germin, a protein that increases significantly in germinating wheat seeds. Like germin, Gs1 and Gs2 were resistant to proteases and were glycosylated. Immunoblots were probed with antibodies to Gs1 and Gs2 to determine the distribution of these polypeptides among organs and cell-free fractions. Gs1 and Gs2 were present in roots and coleoptiles, but absent from leaves. In roots, Gs1 and Gs2 were present in the mature region, but not the tip. Gs1 and Gs2 increased in roots, but decreased in coleoptiles in response to salt stress. Gs1 and Gs2 were distributed among the soluble, microsomal, and cell wall fractions of roots, but the majority of Gs1 and Gs2 was present in the soluble fraction. Although Gs1 and Gs2 were heat stable, their synthesis was not affected by abscisic acid treatment. Gs2 accumulated during abscisic acid treatment, whereas Gs1 did not. However, a 25.5 kilodalton, isoelectric point 6.1 polypeptide that was immunologically related to Gs1 did accumulate with abscisic acid treatment.  相似文献   

3.
盐胁迫下大麦根系木质部压力的自调节现象   总被引:9,自引:0,他引:9  
用植物木质部压力探针测定的结果表明,水培大麦幼苗根的木质部压力在环境条件恒定不变时始终保持波动,并且在受到轻度的盐胁迫和当盐胁迫解除时表现出高度的自调节现象.这种波动和自调节现象将对植物水势的测定和根的径向反射系数的测定产生很大的影响,并可能与植物的抗盐性有关.小麦根在同样条件下未表现出上述现象.  相似文献   

4.
多胺浸种改善盐胁迫大麦根系液泡膜功能的机理   总被引:15,自引:0,他引:15  
研究了 0 .1mmol/L腐胺 (Put)和 0 .5mmol/L亚精胺 (Spd)浸种对 2 0 0mmol/LNaCl胁迫下大麦 (HordeumvulgareL .)幼苗生长速率、干物质积累、离子分布、液泡膜蛋白结合多胺含量以及液泡膜膜脂组分与功能的影响。结果表明 ,Put和Spd浸种均可缓解盐胁迫对大麦幼苗的盐害 ,促进生长和干物质积累 ,降低大麦幼苗体内 [Na ]/[K ]。与盐处理的对照植株相比 ,Put和Spd浸种均可提高大麦幼苗根系液泡膜磷脂含量 ,降低糖脂结合半乳糖含量 ,而膜上非共价结合多胺含量Spd PAx (一种未知多胺 )与Put Dap (二氨基丙烷 )之比 ( (Spd PAx) / (Put Dap) )、共价和非共价结合多胺总量均上升。统计分析结果表明 ,液泡膜非共价结合多胺 (Spd PAx) / (Put Dap)与H _ATPase和H _PPase活性呈显著正相关关系。  相似文献   

5.
The impact of aluminium stress on activities of enzymes of the oxidative metabolism: superoxide dismutase (SOD), ascorbate peroxidase (APX), peroxidase (POD), NADH peroxidase (NADH-POD) and oxalate oxidase (OXO) was studied in barley (Hordeum vulgare L. cv. Alfor) root tips. SOD appeared to be involved in detoxification mechanisms at highly toxic Al doses and after long Al exposure. POD and APX, H2O2 consuming enzymes, were activated following similar patterns of expression and exhibiting significant correlation between their elevated activities and root growth inhibition. The signalling role of NADH-POD in oxidative stress seems to be more probable than that of OXO, which might be involved in Al toxicity mechanism. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

6.
Gene Expression Profiling of Plants under Salt Stress   总被引:1,自引:0,他引:1  
  相似文献   

7.
8.
9.
10.
Accumulation of two peripheral membrane polypeptides (20 and 28 kDa) in roots of Al-sensitive (cv. Alfor) and Al-resistant (cv. Bavaria) barley cultivars were analysed during Al stress. Both cultivars were subjected to Al concentration ranging from 0 to 150 µM for 24, 48, 72 and 96 h. Accumulation of both polypeptides was determined 24 h after exposure of plants to Al and content of both polypeptides showed only small depedence upon Al concentration and duration of Al treatment. Although, based on root growth test, Bavaria showed significantly greater resistance to Al than Alfor, analysis of 20 and 28 kDa polypeptide pattern has not revealed significant difference between the two cultivars. However, accumulation of 20 and 28 kDa polypeptides in Alfor was selectively induced by Al treatment because different pH of the root media (pH 3.5 to 6.5) or application of other metals (Cu, Co, or Cd) failed to induce these two bands. On the other hand, accumulation of these polypeptides in Bavaria was induced not only by Al, but also by Cd and in a lesser extent by Co treatment.  相似文献   

11.
土壤钙含量过高会对植物正常生长发育形成严重的威胁.这是中国西南喀斯特区域农业生产和环境保护的重要限制因素.了解植物对高钙胁迫的响应机制,可以促进喀斯特地区可持续农业发展和生态环境保护.为揭示植物对高钙胁迫相应的分子机理,本研究充分利用拟南芥(Arabidpsis thaliana)丰富的生物信息资源,系统比较和分析了对照和高钙胁迫处理情况下拟南芥根部的基因表达情况.40 mmol/L CaCl2处理明显抑制了拟南芥根部生长.转录组分析表明,高钙处理下,拟南芥根部乙烯、脱落酸和茉莉酸途径表达上调,其中,茉莉酸合成、响应和代谢途径相关基因表达均上调,说明这3个激素相关途径,对植物应对高钙胁迫具有重要的作用,尤其是茉莉酸相关途径.  相似文献   

12.
13.
研究了0~300mmol/LNaCl对大麦(Hordeum-vulgare-L.)幼苗生长速率、根系游离和结合态多胺含量以及多胺生物合成关键酶活性的影响。结果表明,在0~200mmol/L NaCl处理下精氨酸脱羧酶(ADC)、多胺氧化酶(PAO)以及转谷酰胺酶(Tgase)活性明显提高,而在300 mmol/L NaCl处理下活性下降。与之对应,游离腐胺(Put)含量随处理盐浓度的提高一直呈上升趋势,亚精胺(Spd)和在根系内检测到的未知多胺(Pax)在低浓度盐处理时含量上升,随盐浓度的提高含量下降。盐处理前后精胺(Spm)含量变化不明显。低浓度盐处理时游离态(Spd+Pax)/Put上升,随盐浓度的提高比值明显下降。结合态Put、Spd和Pax含量以及结合态多胺总量均在低浓度盐处理时上升,随盐浓度的提高含量明显下降。统计分析显示,大麦相对生长速率与游离态(Spd+Pax)/Put和结合态多胺含量间均呈极显著正相关关系,与游离态多胺和结合态多胺的比值间均呈显著负相关关系,上述结果说明盐胁迫下大麦体内游离态Spd、Pax与Put以及结合态形式之间的平衡与大麦耐盐性关系密切,游离态Put向Spd 、Pax以及结合态形式转化均有利于大麦耐盐性的提高.  相似文献   

14.
15.
Effect of Exogenous Glycinebetaine on Na+ Transport in Barley Roots   总被引:5,自引:0,他引:5  
Ahmad, N., Wyn Jones, R. G. and Jeschke, W. D. 1987. Effectof exogenous glycinebetaine on Na+ transport in barley roots.—J.exp. Bot. 38: 913–921. A comparison has been made of the kinetics of 22Na+ uptake intoexcised barley roots and roots pre-loaded with glycinebetaine.The elevated intracellular glycinebetaine or a metabolic consequencethereof increased the Na+ influx, and the effect was relatedto the level of internal glycinebetaine and or Na+ [Cl].The quasi-steady-state Na+ influx at the tonoplast rather thanthe plasmalemma influx was apparently influenced by glycinebetaineloading. The tonoplast fluxes and vacuolar Na+ content wereconsistently higher in glycinebetaine-loaded roots than unloadedroots. A membrane-modifying role of glycinebetaine in relationto ion compartmentation is discussed. Key words: Excised roots, glycinebetaine, Na+, ion fluxes, barley  相似文献   

16.
Light-Dark Changes in Proline Content of Barley Leaves under Salt Stress   总被引:3,自引:0,他引:3  
Proline accumulation in leaves of barley (Hordeum vulgare L. cv. Alfa) seedlings treated with 150 mM NaCl was promoted in the light and suppressed in the dark. The light/dark changes of proline content was enhanced with each 12 h light/12 h dark cycle and the proline content increased steadily. Root and shoot concentrations of Na+ and Cl in salt treated plants increased about 10 to 25 times as compared to the control. The content of these ions and the content of malondialdehyde were higher in the shoot of seedlings exposed to salt stress for 4 d in the light in comparison with the seedlings exposed to NaCl for 4 d in darkness. Light stimulated both ions and proline accumulation in the leaves and has no effect in the roots. Oxygen uptake was higher in the seedlings kept 4 d in the light which have higher endogenous free proline content. Chlorophyll fluorescence measurements showed that the photochemical activity of PS 2 slightly decreased as a result of salt stress and was not influenced by light regimes during plant growth.  相似文献   

17.
Effects of Paclobutrazol on Response of Two Barley Cultivars to Salt Stress   总被引:1,自引:0,他引:1  
The seeds of two barley (Hordeum vulgare L.) cultivars (a drought resistant cv. Tokak-137/57 and a drought sensitive cv. Erginel-90) were imbibed either in distilled water (control) or in a solution containing 40 mg dm−3 paclobutrazol (PBZ) and air dried. Seeds were germinated and grown in a glasshouse for 21 d and seedlings were subjected to salt stress by treating them with 100 and 200 mM NaCl for 12 d. The height of shoots was significantly decreased and root length was increased in PBZ-treated plants prior and after NaCl stress for 12 d leading to an increase in root to shoot ratio. Leaf chlorophyll and carotenoid contents in PBZ treated plants were increased in controls and especially in plants subjected to salt stress. PBZ induced increase in superoxide dismutase (SOD) activities was higher in cv. Tokak-157/37, than in cv. Erginel-90. However, an increase in SOD activity was not accompanied by an increase in peroxidase activity. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

18.
The role of mannitol as an osmoprotectant, a radical scavenger, a stabilizer of protein and membrane structure, and protector of photosynthesis under abiotic stress has already been well described. In this article we show that mannitol applied exogenously to salt-stressed wheat, which normally cannot synthesize mannitol, improved their salt tolerance by enhancing activities of antioxidant enzymes. Wheat seedlings (3 days old) grown in 100 mM mannitol (corresponding to −0.224 MPa) for 24 h were subjected to 100 mM NaCl treatment for 5 days. The effect of exogenously applied mannitol on the salt tolerance of plants in view of growth, lipid peroxidation levels, and activities of antioxidant enzymes in the roots of salt-sensitive wheat (Triticum aestivum L. cv. Kızıltan-91) plants with or without mannitol was studied. Although root growth decreased under salt stress, this effect could be alleviated by mannitol pretreatment. Peroxidase (POX) and ascorbate peroxidase (APX) activities increased, whereas superoxide dismutase (SOD), catalase (CAT), and glutathione reductase (GR) activities decreased in Kızıltan-91 under salt stress. However, activities of antioxidant enzymes such as SOD, POX, CAT, APX, and GR increased with mannitol pretreatment under salt stress. Although root tissue extracts of salt-stressed wheat plants exhibited only nine different SOD isozyme bands of which two were identified as Cu/Zn-SOD and Mn-SOD, mannitol treatment caused the appearance of 11 different SOD activity bands. On the other hand, five different POX isozyme bands were determined in all treatments. Enhanced peroxidation of lipid membranes under salt stress conditions was reduced by pretreatment with mannitol. We suggest that exogenous application of mannitol could alleviate salt-induced oxidative damage by enhancing antioxidant enzyme activities in the roots of salt-sensitive Kızıltan-91.  相似文献   

19.
Xu D  Duan X  Wang B  Hong B  Ho T  Wu R 《Plant physiology》1996,110(1):249-257
A late embryogenesis abundant (LEA) protein gene, HVA1, from barley (Hordeum vulgare L.) was introduced into rice suspension cells using the Biolistic-mediated transformation method, and a large number of independent transgenic rice (Oryza sativa L.) plants were generated. Expression of the barley HVA1 gene regulated by the rice actin 1 gene promoter led to high-level, constitutive accumulation of the HVA1 protein in both leaves and roots of transgenic rice plants. Second-generation transgenic rice plants showed significantly increased tolerance to water deficit and salinity. Transgenic rice plants maintained higher growth rates than nontransformed control plants under stress conditions. The increased tolerance was also reflected by delayed development of damage symptoms caused by stress and by improved recovery upon the removal of stress conditions. We also found that the extent of increased stress tolerance correlated with the level of the HVA1 protein accumulated in the transgenic rice plants. Using a transgenic approach, this study provides direct evidence supporting the hypothesis that LEA proteins play an important role in the protection of plants under water-or salt-stress conditions. Thus, LEA genes hold considerable potential for use as molecular tools for genetic crop improvement toward stress tolerance.  相似文献   

20.
利用实时荧光定量PCR(real-time PCR)和雷氏盐紫外分光光度计法分别测定了400mmol/L NaCl胁迫处理0,0.5h,2h,12h,1d,2d,4d,6d,8d,10d和12d,甘菊叶片中BADH基因表达和甜菜碱含量的变化,并讨论了二者间的相互作用关系。试验结果表明,在高盐胁迫下甘菊叶片中BADH基因和甜菜碱含量均呈现先上升后下降的趋势。在处理初期(0.5h和2h)BADH基因的表达量与对照相比略有下降,此后随处理时间的增加BADH基因表达持续增大,在胁迫处理6d时BADH基因表达量最大为对照的4.6倍,6d之后BADH基因表达量逐渐降低。甜菜碱含量在NaCl处理0.5h突然增大以应对胁迫反应,此后其含量出现了小幅的震荡上升,在胁迫处理4d时达到了最大值,此后随胁迫处理时间的增加甜菜碱含量逐渐降低。二者之间的变化并不是同步的,而是存在滞后性,分析认为甘菊叶片中BADH基因表达与甜菜碱积累间存在相互抑制的作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号