首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Protocadherin X (PCDHX) and Protocadherin Y (PCDHY) are cell-surface adhesion molecules expressed predominantly in brain. The human PCDH11X/Y gene pair is located in the non-pseudoautosomal X-Y homologous region (Xq21.3/Yp11.2). The possible existence of PCDH11 gene dosage differences between human and non-human primates is of evolutionary significance with respect to species differences and escape from X inactivation, and has been repeatedly debated. Previous investigations on the X/Y homologous status of PCDH11 and adjacent sequences in non-human primates have highlighted the complexity of the molecular pattern and evolutionary history of this genomic region. This paper provides for the first time direct evidence for the absence of the PCDH11 genefrom the Y chromosome of chimpanzee (Pan troglodytes) as well as gorilla (Gorilla gorilla). By confirmingthe suspected lack of X-Y homologous status for PCDH11 in non-human primates, our results reinforce the hypothesis of a hominid-specific role for this gene in brain development.  相似文献   

2.
3.
Accidental recombination between the differential segments of the X and Y chromosomes in man occasionally allows transfer of Y-linked sequences to the X chromosome leading to testis differentiation in so-called XX males. Loss of the same sequences by X-Y interchange allows female differentiation in a small proportion of individuals with XY gonadal dysgenesis. A candidate gene responsible for primary sex determination has recently been cloned from within this part of the Y chromosome by Page and his colleagues. The observation that a homologue of this gene is present on the short arm of the X chromosome and is subject to X-inactivation, raises the intriguing possibility that sex determination in man is a quantitative trait. Males have two active doses of the gonad determining gene, and females have one dose. This hypothesis has been tested in a series of XX males, XY females and XX true hermaphrodites by using a genomic probe, CMPXY1, obtained by probing a Y-specific DNA library with synthetic oligonucleotides based on the predicted amino-acid sequence of the sex-determining protein. The findings in most cases are consistent with the hypothesis of homologous gonad-determining genes, GDX and GDY, carried by the X and Y chromosomes respectively. It is postulated that in sporadic or familial XX true hermaphrodites one of the GDX loci escapes X-inactivation because of mutation or chromosomal rearrangement, resulting in mosaicism for testis and ovary-determining cell lines in somatic cells. Y-negative XX males belong to the same clinical spectrum as XX true hermaphrodites, and gonadal dysgenesis in some XY females may be due to sporadic or familial mutations of GDX.  相似文献   

4.
It has been shown previously that abnormal placental growth, i.e., hyper- and hypoplasia, occurs in crosses and backcrosses between different mouse (Mus) species. A locus that contributes to this abnormal development has been mapped to the X chromosome. Unexpectedly, an influence of fetal sex on placental development has been observed, in that placentas attached to male fetuses tended to exhibit a more pronounced phenotype than placentas attached to females. Here, we have analyzed this sex dependence in more detail. Our results show that differences between male and female placental weights are characteristic of interspecific matings and are not observed in intraspecific Mus musculus matings. The effect is retained in congenic lines that contain differing lengths of M. spretus-derived X chromosome. Expression of the X-linked gene Pgk1 from the maternal allele only and lack of overall activity of two paternally inherited X-linked transgenes indicate that reactivation or lack of inactivation of the paternal X chromosome in trophoblasts of interspecific hybrids is not a frequent occurrence. Thus, the difference between male and female placentas seems not to be caused by faulty preferential X-inactivation. Therefore, these data suggest that the sex difference of placental weights in interspecific hybrids is caused by interactions with the Y chromosome.  相似文献   

5.
The origin of modern humans can be traced by comparing polymorphic sites in either mitochondria or genomic sequences between humans and other primates. The human Y chromosome has both a non-recombining region and X-Y homologous pseudo-autosomal regions. In the nonrecombining region events during evolution can be directly detected. At least a part of homology between Xq21 and Yp11 is a result of rather recent translocations from the X chromosome to the Y chromosome. DNA markers residing in the nonrecombining region of the human Y chromosome are potentially useful in tracing male-specific gene flow in human evolution. However, the number of available markers in the region is limited. Here, we report a novel X-Y homologous (CA)n repeat locus in the nonrecombining region of the Y chromosome. This marker, DXYS241, has several interesting features. Y- and X-chromosome alleles are distinguishable because the Y-chromosome alleles are shorter than the X-chromosome alleles most of the time. We developed 2 primer sets for specific examination of Y- and X-chromosome alleles. The marker should be useful in establishing relationships between populations based on patrilineal gene flow. Sequences homologous to DXYS241 are also found on the X chromosome of primates. Four events during primate evolution that led to the modern human Y chromosome were identified.  相似文献   

6.
Summary X-inactivation patterns were studied by replication analyses both in lymphocytes and skin fibroblasts of two patients carrying balanced X-autosome translocations, t(X;10)-(pter;q11) and t(X;17)(q11;q11), and one patient with an unbalanced translocation t(X;22)(p21;q11). Preferential late replication of the normal X chromosome was found in lymphocytes of both patients carrying balanced translocations and in skin fibroblasts of the patient carrying the translocation t(X;17). However, skin fibroblasts of the patient with a translocation t(X;10) showed preferential late replication of the abnormal der(X) chromosome with no spreading of late replication to the autosomal segment. In the case of unbalanced translocation t(X;22) there was preferential late replication of the der(X) chromosome both in lymphocytes and skin fibroblasts. The abnormal phenotype of the patients is discussed in relation to the observed X-inactivation patterns and the variability of the patterns in different tissues.  相似文献   

7.
(C57BL x CBA)F1 hybrid female mice were mated with hemizygous Rb(X.2)2Ad males to distinguish the paternal X chromosome. Homozygous tetraploids were produced by blastomere fusion at the 2-cell stage, and 161 of these were transferred to recipients and analysed on the 10th day of gestation. 59 implants contained resorptions and 76 contained either an embryo and/or extraembryonic membranes. 38 (20, XXXX and 18, XXYY) were analysed to investigate their X-inactivation pattern. Embryonic and yolk sac endodermally- and mesodermally-derived samples were analysed by G-banding and by Kanda analysis. In the XX and XY controls, the predicted pattern of X-inactivation was observed, though 12.2% of metaphases in the XX series displayed no X-inactivation. In the XY series the Y chromosome was seen in a high proportion of metaphases. In the XXXX tetraploids, 8 cell lineages were recognized with regard to their X-inactivation pattern, though most belonged to the following 3 categories: (XmXm)XpXp, Xm(XmXp)Xp and XmXm(XpXp). The other categories were only rarely encountered. In the embryonic and mesodermally-derived tissue the ratio of these groups was close to 1:2:1, whereas in the endodermally-derived tissue it was 1:4.11:4.88, due to preferential paternal X-inactivation. A significant but small proportion of all 3 tissues analysed displayed no evidence of X-inactivation. Indirect evidence suggests that this represents a genuine group because of the high efficiency of the Kanda staining. The presence of the Xm(XmXp)Xp category is consistent with the expectation that X-inactivation occurs randomly in 2 of the 4 X chromosomes present. The presence of small numbers of preparations with no evidence of X-inactivation and other unexpected categories suggests that these are probably selected against during development.  相似文献   

8.
In most discussions of the evolution of sex chromosomes, it is presumed that the morphological differences between the X and Y were initiated by genetic changes. An alternative possibility is that, in the early stages, a key role was played by epigenetic modifications of chromatin structure that did not depend directly on genetic changes. Such modifications could have resulted from spontaneous epimutations at a sex-determining locus or, in mammals, from selection in females for the epigenetic silencing of imprinted regions of the paternally derived sex chromosome. Other features of mammalian sex chromosomes that are easier to explain if the epigenetic dimension of chromosome evolution is considered include the relatively large number of X-linked genes associated with human brain development, and the overrepresentation of spermatogenesis genes on the X. Both may be evolutionary consequences of dosage compensation through X-inactivation.  相似文献   

9.
In the present study we have analyzed X chromosome inactivation patterns in 40 women aged from 74 to 85 years (mean age 78 years). The control group was 36 women (mean age 30 years). The most common AR-assay was used to determine X-inactivation patterns (the study of methylation patterns of HpaII site in human androgen receptor gene (HUMARA) by quantative PCR). The age dependence of X-inactivation was not observed. We have detected skewed X-inactivation in three women among 40 (7.5%) elderly women comparing to two women among 36 (5.5%) women from control group. The difference was not found to be statistically significant. We made a suggestion that higher incidence of skewed X-inactivation in elderly women revealed by previous studies could occur due to some experimental ambiguities as heterogeneity of the group studied; inclusion of women having relatives with genetic abnormalities associated with skewed X-inactivation patterns; the difference of X chromosome inactivation skewing determination. We conclude that present study does not show X chromosome inactivation to be age dependent.  相似文献   

10.
11.
Sexual antagonism and the evolution of X chromosome inactivation   总被引:2,自引:0,他引:2  
In most female mammals, one of the two X chromosomes is inactivated early in embryogenesis. Expression of most genes on this chromosome is shut down, and the inactive state is maintained throughout life in all somatic cells. It is generally believed that X-inactivation evolved as a means of achieving equal gene expression in males and females (dosage compensation). Following degeneration of genes on the Y chromosome, gene expression on X chromosomes in males and females is upregulated. This results in closer to optimal gene expression in males, but deleterious overexpression in females. In response, selection is proposed to favor inactivation of one of the X chromosomes in females, restoring optimal gene expression. Here, we make a first attempt at shedding light on this intricate process from a population genetic perspective, elucidating the sexually antagonistic selective forces involved. We derive conditions for the process to work and analyze evolutionary stability of the system. The implications of our results are discussed in the light of empirical findings and a recently proposed alternative hypothesis for the evolution of X-inactivation.  相似文献   

12.
13.
14.
The inactive X chromosome (Xi) forms a heterochromatic structure in the nucleus that is known to have several modifications to specific histones involving acetylation or methylation. Using three different antibodies in four different cell lines, we demonstrate that the Xi in human and mouse cells is highly enriched in ubiquitinated protein(s), much of which is polyubiquitinated. This ubiquitination appears specific for the Xi as it was not observed for centromeres or other regions of heterochromatin. Results using an antibody specific to ubiquitinated H2A provide a clear link between H2A ubiquitination and gene repression, as visualized across an entire inactive chromosome. Interestingly, the ubiquitination of the chromosome persists into mitosis and can be seen in a reproducible banded pattern. This pattern matches that of Xist RNA which forms bands as it detaches from the mitotic X chromosome. Both ubiquitination and Xist RNA appear enriched in gene dense regions and depleted in gene poor bands, but do not correlate with L1 LINE elements which have been suggested as key to X-inactivation. These results provide evidence that ubiquitination along with Xist RNA plays an important role in the formation of facultative heterochromatin during X-inactivation.  相似文献   

15.
16.
Summary By in situ hybridization, Y-specific DNA sequences were localized on Xp22.3-Xpter of one of the two X chromosomes in all of eleven XX males studied. In nine of the cases the presence of the Y-specific DNA did not affect random X inactivation in fibroblasts. Fibroblasts of the other two cases showed a preferential inactivation of the Y DNA-carrying X chromosome. In only one of these two exceptions blood lymphocytes could also be studied, and here, random inactivation of the Y DNA-carrying X chromosome occurred. Furthermore, the gene dosage of steroid sulfatase (STS) was examined by Southern blot analysis. In ten of the cases including the one showing random X-inactivation in lymphocytes but not in fibroblasts, a double dosage of the STS gene is present. The remaining case with non-random inactivation shows a single STS gene dosage. This case was reported previously to have STS enzyme activity in the male range. It is assumed that, as a consequence of an unequal X-Y interchange, a deletion of X-specific DNA sequences may result in the preferential inactivation of the Y DNA-carrying X chromosome.  相似文献   

17.

Background

Protocadherin-11 is a cell adhesion molecule of the cadherin superfamily. Since, only in humans, its paralog is found on the Y chromosome, it is expected that protocadherin-11X/Y plays some role in human brain evolution or sex differences. Recently, a genetic mutation of protocadherin-11X/Y was reported to be associated with a language development disorder. Here, we compared the expression of protocadherin-11 X-linked in developing postnatal brains of mouse (rodent) and common marmoset (non-human primate) to explore its possible involvement in mammalian brain evolution. We also investigated its expression in the Bengalese finch (songbird) to explore a possible function in animal vocalization and human language faculties.

Methodology/Principal Findings

Protocadherin-11 X-linked was strongly expressed in the cerebral cortex, hippocampus, amygdala and brainstem. Comparative analysis between mice and marmosets revealed that in certain areas of marmoset brain, the expression was clearly enriched. In Bengalese finches, protocadherin-11 X-linked was expressed not only in nuclei of regions of the vocal production pathway and the tracheosyringeal hypoglossal nucleus, but also in areas homologous to the mammalian amygdala and hippocampus. In both marmosets and Bengalese finches, its expression in pallial vocal control areas was developmentally regulated, and no clear expression was seen in the dorsal striatum, indicating a similarity between songbirds and non-human primates.

Conclusions/Significance

Our results suggest that the enriched expression of protocadherin-11 X-linked is involved in primate brain evolution and that some similarity exists between songbirds and primates regarding the neural basis for vocalization.  相似文献   

18.
Inactivation of the Rps4 gene on the mouse X chromosome.   总被引:2,自引:0,他引:2  
  相似文献   

19.
We investigated the effect of aging on X chromosome inactivation by performing a longitudinal study in a population of 178 normal females. We examined X-inactivation ratios (fraction of cells with the same X chromosome active) in two sets of peripheral blood DNA samples collected about two decades apart. We observed a strong correlation between the ratios of individual females at the two time points and found no significant difference between the two sets of measurements. These observations indicate that aging, per se (as opposed to being aged), has little effect on X-inactivation. However, we also found that several females who were older than 60 years of age at the time of the first measurement acquired significant changes in the X-inactivation ratio. We speculate that, if X-inactivation skewing is a frequently acquired trait in older females, it is acquired as the result of a discontinuous or catastrophic process and is not the result of constant selection for or against hematopoietic stem cells with a particular X chromosome active.  相似文献   

20.
Sex chromosomes differ from autosomes by dissimilar gene content and, at a more advanced stage of their evolution, also in structure and size. This is driven by the divergence of the Y or W from their counterparts, X and Z, due to reduced recombination and the resulting degeneration as well as the accumulation of sex-specific and sexually antagonistic genes. A paradigmatic example for Y-chromosome evolution is found in guppies. In these fishes, conflicting data exist for a morphological and molecular differentiation of sex chromosomes. Using molecular probes and the previously established linkage map, we performed a cytogenetic analysis of sex chromosomes. We show that the Y chromosome has a very large pseudoautosomal region, which is followed by a heterochromatin block (HCY) separating the subtelomeric male-specific region from the rest of the chromosome. Interestingly, the size of the HCY is highly variable between individuals from different population. The largest HCY was found in one population of Poecilia wingei, making the Y almost double the size of the X and the largest chromosome of the complement. Comparative analysis revealed that the Y chromosomes of different guppy species are homologous and share the same structure and organization. The observed size differences are explained by an expansion of the HCY, which is due to increased amounts of repetitive DNA. In one population, we observed also a polymorphism of the X chromosome. We suggest that sex chromosome-linked color patterns and other sexually selected genes are important for maintaining the observed structural polymorphism of sex chromosomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号