首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Blastocyst development, total cell number and allocation to inner cell mass (ICM) and trophectoderm (TE) lineages was compared among day 9 hatched blastocysts from four culture treatments in a two-factor design. Two modified commercial media (KSOM and SOF) were used in atmospheres with two oxygen concentrations (5% and 20% O2). No significant effect of medium on development was found, but 20% O2 increased hatching (p < 0.05). There were more cells in hatched blastocysts cultured in KSOM than in SOF (181 vs 136, respectively; p < 0.0001); however, ICM/total cell ratio was not affected by medium. There was a trend suggesting that the proportion of cells allocated to ICM was lower in hatched blastocysts cultured under 5% O2 compared with 20% O2 (0.323 vs 0.380, respectively; p < 0.1). No significant interactions between medium type and oxygen concentration were found. These results indicate that culture components used in this study may affect cell proliferation without altering cell allocation, and that oxygen concentration may play a role in allocation of cells to ICM and TE lineages.  相似文献   

2.
Cotyledon explants of ginseng (Panax ginseng C.A. Meyer) zygotic embryos produced somatic embryos at a high rate (68%) on medium without any growth regulators. Under this culture condition, apparent polar somatic embryogenesis occurred near the basal-excised portion of the cotyledons. When the cotyledon explants were cultured on medium containing 2,3,5-triiodobenzoic acid (TIBA), an auxin polar-transport inhibitor, the frequency of somatic embryo formation markedly decreased and was completely inhibited on medium containing 20 μM TIBA. On medium containing 5–10 μM, somatic embryos developed sporadically on the surface of the cotyledons and had a normal embryo axis but jar-shaped cotyledons. Embryos with jar-shaped cotyledons were also observed to occur at a high frequency when the early globular embryos formed on hormone-free medium were transferred to medium containing 20 μM TIBA. From these results, it was deduced that endogenous auxin in the cotyledon explants plays an important role in the induction of somatic embryos and that the cotyledon development in somatic embryos is also related to the polar transport of endogenous auxin. Received: 11 October 1996 / Revised version received: 8 January 1997 / Accepted: 26 January 1997  相似文献   

3.
4.
The present study was conducted to compare bovine embryo developmental quality, after culture in different defined culture media, up to blastocyst stage, and subsequently cultured in media supplemented with beta-mercaptoethanol (beta-ME) following blastocyst vitrification and thawing. In part one of this study, presumptive zygotes were randomly allocated into the following media: (1) CR1, (2) KSOM, (3) SOF, and (4) sequential KSOM-SOF. In the second part of the study, blastocysts derived from four different culture media were subjected to a solid surface vitrification (35% (v/v) ethylene glycol+0.5M Sucrose+5% (w/v) Polyvinylpyrrolidone (PVP), and tested for the effect of beta-ME on their post-vitrification survival. Following thawing, blastocysts were cultured with or without beta-ME. Culture medium had no effect on cleavage rates; however, a significantly greater number of zygotes cultured in KSOM, KSOM-SOF, or SOF developed to the 8-cell stage, compared with those cultured in CR1. A greater proportion of the zygotes cultured in SOF or KSOM-SOF reached blastocysts, than did those cultured in CR1 or KSOM. The use of sequential KSOM-SOF significantly increased total cell numbers of Day 7 expanded-blastocysts when compared to those cultured in CR1, KSOM, or SOF. Addition of beta-ME into culture media after vitrification and thawing improved blastocyst survival, hatching rates, and total cell numbers of blastocysts. In conclusion, supplementation of beta-ME into culture medium after vitrification and thawing significantly increased blastocyst survival, hatching rates, and their total cell numbers. These results suggest that vitrified IVF embryos should be thawed and briefly cultured in beta-ME medium prior to embryo transfer.  相似文献   

5.
The objectives of this study were to identify an improved in vitro cell-free embryo culture system and to compare post-warming development of in vitro produced (IVP) bovine embryos following vitrification versus slow freezing. In Experiment 1, non-selected presumptive zygotes were randomly allocated to four medium treatments without co-culture: (1) SOF + 5% FCS for 9 days; (2) KSOM + 0.1% BSA for 4 days and then KSOM + 1% BSA to Day 9; (3) SOF + 5% FCS for 4 days and then KSOM + 1% BSA to Day 9; and (4) KSOM + 0.1% BSA for 4 days and then SOF + 5% FCS to Day 9. Treatment 4 (sequential KSOM-SOF culture system) improved (P > 0.05) morulae (47%), early blastocysts (26%), Day-7 blastocysts (36%), cell numbers, as well as total hatching rate (79%) compared to KSOM alone (Treatment 2). Embryos cultured in KSOM + BSA alone developed slowly and most of them hatched late on Day 9, compared to other treatments. In Experiment 2, the sequential KSOM-SOF culture system was used and Day-7 blastocysts were subjected to following cryopreservation comparison: (1) vitrification (VS3a, 6.5 M glycerol); or (2) slow freezing (1.36 M glycerol). Warmed embryos were cultured in SOF with 7.5% FCS. Higher embryo development and hatching rates (P < 0.05) were obtained by vitrification at 6h (71%), 24h (64%), and 48h (60%) post-warming compared to slow freezing (48, 40, and 31%, respectively). Following transfer of vitrified embryos to synchronized recipients, a 30% pregnancy rate was obtained. In conclusion, replacing KSOM with SOF after 4 days of culture produced better quality blastocysts. Vitrification using VS3a may be used more effectively to cryopreserve in vitro produced embryos than the conventional slow freezing method.  相似文献   

6.
Employing a total of 3465 bovine oocytes this study was aimed at improving the efficiency of bovine embryo production under defined and undefined conditions. Following in vitro maturation (IVM) and in vitro fertilization (IVF), oocytes were allocated to various culture treatments using synthetic oviduct fluid (SOF). In our 3 experiments we showed that: 1) the addition of fetal calf serum (FCS 10% v/v) to SOF droplets after 20 to 24 h significantly improved blastocyst yields on Day 6 (21 vs 12%; P < 0.01), but not at later stages and resulted in significantly higher Day-8 blastocyst cell numbers (148 +/- 61 vs 92 +/- 35; P < 0.05); 2) the removal of bovine serum albumin (BSA) from the standard SOF medium resulted in significantly reduced blastocyst yields on Days 6, 7 and 8, respectively (17 vs 8%; 28 vs 18%; 31 vs 21%; P < 0.05); 3) the presence or absence of cumulus cells surrounding the presumptive zygote in culture in SOF had no effect on cleavage rate, percentage of 5-8 cell embryos or blastocyst yields (Day 6,7 or 8); 4) the culture of presumptive zygotes in SOF in an atmosphere of 5% CO2 in air (20% O2) resulted in significantly reduced development compared with culture in 5% CO2, 5% O2, 90% N2 in terms of blastocyst yield on Days 6, 7 and 8 and on Day 8 hatching rate, respectively (5 vs 22%; 9 vs 33%; 13 vs 48%; 50 vs 8%; P < 0.001) and 5) embryo density (1 embryo per 1 or 3 microl SOF) or replacing the culture medium every 48 h had no effect when SOF was supplemented with serum; however, under serum-free conditions, changing of the media resulted in a slightly improved Day-6 blastocyst yield such that renewal of serum-free medium mimicked the effect of serum addition.  相似文献   

7.
The aim of this study was to assess the effect of a bovine in vitro culture system on blastocyst yield and quality after vitrification. In Experiment 1, IVM/IVF zygotes were cultured in either synthetic oviduct fluid (SOF) in 5% CO2, 5% O2, 90% N2; or TCM199-granulosa cells (TCM199-GCM) in 5% CO2 in air. In vivo blastocysts were used as a control. Culture in SOF resulted in a significantly higher blastocyst yield on both Day 7 (31.3 vs 13.2%, P < 0.001) and 8 (36.8 vs 23.7%, P < 0.001) than did culture in TCM199-GCM. After vitrification, survival at 72 h of in vivo blastocysts was significantly higher than both in vitro groups, while significantly more blastocysts produced in TCM199-GCM survived compared to those produced in SOF (0, 43.5, 78.3% for SOF, TCM199-GCM and in vivo, respectively P < 0.01). In Experiment 2, SOF-GCM proved to be the best post-warming culture system of those tested and was adopted as the post-warming medium for all subsequent experiments. In Experiment 3, zygotes were cultured in SOF or SOF-GCM, in either 5% CO2 in air, or 5% CO2, 5% O2, 90% N2. In agreement with Experiment 1, culture in SOF in 5% O2 resulted in significantly more blastocysts at Day 7 (26.4 vs 17.3%, P < 0.01) and Day 8 (31.5 vs 23.2%, P < 0.01) than did culture in SOF-GCM. However, survival at 72 h post vitrification was significantly higher for SOF-GCM (44 vs 8.3%, P < 0.001). Increasing the O2 concentration to 20% significantly reduced the blastocyst eld from SOF (31.5 vs 17.3%, P < 0.001). In addition, the quality of blastocyst produced was reduced in terms of survival post vitrification (8.3 vs 0%, P < 0.05). In contrast, there was no difference in blastocyst yield (23.2 vs 25.2%) or survival (44.0 vs 36.9%) in SOF-GCM, irrespective of O2 concentration. Experiment 4 examined the duration of exposure to GCM necessary to acquire improved blastocyst quality. Zygotes were cultured in SOF; SOF until Day 3, followed by SOF-GCM for the remainder of the culture; SOF until Day 5, followed by SOF-GCM for the remainder of the culture; or SOF-GCM for the entire culture. Survival at 72 h post vitrification was significantly higher (P < 0.05) in Groups 2 (50.0%, 13/26) and 4 (55.3%, 26/47) than in Groups 1 (21.7%, 10/46) and 3 (10.8%, 4/37). In conclusion, culture system can affect blastocyst yield and quality and crytolerance is a useful indicator of blastocyst quality.  相似文献   

8.
In the present study, we examined the effect of two‐step and sequential culture systems on the development, quality, and gene expression profile of bovine embryos generated by in vitro fertilization. Presumptive zygotes were randomly allocated to four culture treatments: (1) KSOM + 0.4% BSA for 3 days, and then KSOM + 5% FBS to day 7 (K‐K/FBS); (2) KSOM + 0.1% BSA for 3 days, and then SOF + 5% FBS to day 7 (K‐S/FBS); (3) KSOM + 0.1% BSA for 3 days, and then SOF + 0.8% BSA to day 7 (K‐S/BSA); and (4) KSOM + 0.4% BSA for 3 days, and then KSOM + 0.8% BSA to day 7 (K‐K/BSA). Culture medium had no effect on cleavage rate. However, a significant difference (P < 0.01) was observed with the two‐step culture systems, yielding higher rate of blastocysts (37 and 32% for K‐K/FBS and K‐K/BSA, respectively) compared to sequential culture systems (26 and 28% for K‐S/FBS and K‐S/BSA, respectively). Embryos cultured in sequential K‐S/FBS developed slowly, had a lower hatching rate, fewer cells, and a higher apoptosis rate compared to other treatments. Gene expression analysis showed alterations of DNMT1, OCT‐4, and SOD2 in embryos cultured in sequential K‐S/FBS and SOD1 in embryos cultured in two‐step K‐K/BSA. In conclusion, in vitro culture systems may have an impact not just in the developmental potential and quality of the generated embryos but also in the gene expression profile, which suggests that changes in the culture medium composition can modulate global gene expression. Mol. Reprod. Dev. 78:403–414, 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

9.
The aim of this study was to investigate the effect of protein supplementation of culture medium and the presence of a putative antioxidant on bovine zygote development under 5% (low) and 20% (high) O2. In Experiment 1, presumptive zygotes (n=992) were cultured in synthetic oviduct fluid (SOF) alone or supplemented with 3 mg/mL PVP, 3 mg/mL BSA (SOFB), and/or 10% FCS (SOFBF) in 5% CO2, 5% O2, 90% N2. In Experiment 2, zygotes (n=1916) were cultured in SOF, SOFB or SOFBF with or without taurine under high and low O2. In Experiment 1, presence of BSA or BSA plus FCS significantly increased the speed of development compared to SOF or SOF+PVP. Blastocyst quality was also improved, as evidenced by increased hatching rate and cell numbers. In Experiments 2, taurine had no effect on development irrespective of oxygen concentration or protein supplementation. In conclusion, the presence of protein in the culture medium and culture under reduced O2 significantly improved embryo development. Taurine had no effect on development.  相似文献   

10.
Cotyledon explants of Panax ginseng zygotic embryos directly produced somatic embryos on Murashige and Skoog medium without growth regulators. Somatic embryos were formed only near the proximal excised region of cotyledons. Multiple and/or single embryos were formed and the frequency of these formations differed according to the degree of maturity of the zygotic embryos used as the explant source. When cotyledon explants pre-plasmolysed (1.0 M sucrose for 24 h), the frequency of single embryo formation was enhanced regardless of cotyledon maturity. In addition, the distribution pattern of somatic embryos changed markedly because the embryos were formed over the whole surface of the cotyledons. Histological observation revealed that plasmolyzing pretreatment broke the plasmodesmatal connection between cells and when the embryogenic cell divisions commenced, plasmodesmatal strands were hardly observed except for newly formed cell walls. This indicates that the enhanced single embryo formation over the entire surfaces of cotyledon explants might be the result of an interruption of cell–cell interaction by plasmolyzing pretreatment.  相似文献   

11.
Cotyledon explants from zygotic embryos of Panax ginseng produced somatic embryos on Murashige and Skoog basal medium without growth regulators. Somatic embryos developed directly from epidermal cells at the cotyledon base. Somatic embryos were always formed from the side of the cotyledon opposite to the one attached to the medium surface regardless of cotyledon orientation. The frequency of somatic embryo formation from the abaxial epidermis (66%) was much higher than that from the adaxial epidermis (12%). Differences in embryogenic response were likely related to cell structure. Abaxial epidermal cells were filled with reserve materials (lipid bodies), while adaxial epidermal cells were devoid of any prominent reserves. During germination, the reserve materials in the cells of the cotyledons disappeared rapidly. At the same time, the competency of somatic embryo formation from cotyledon explants declined rapidly to zero. Upon culture of the cotyledon explants (for somatic embryo induction), lipid bodies slowly disappeared, but starch grains accumulated prominently. Reserve materials disappeared after commencement of embryogenic cell division. During germination, lipid bodies rapidly disappeared, and chloroplasts developed instead of starch grains. Received: 29 January 1997 / Revised version received: 16 April 1997 / Accepted: 9 May 1997  相似文献   

12.
Somatic embryogenesis from single cells is important for normal plant regeneration of ginseng. Cotyledon explants from zygotic embryos of two new ginseng cultivars, Chun-Poong and Yun-Poong, produced somatic embryos on Murashige and Skoog (MS) basal medium and MS medium containing growth regulators. The highest frequency of single somatic embryo formation was obtained when cotyledon explants were excised from premature (cultured for 1 day) zygotic embryos (about 6 mm in length) of both cvs. Chun-Poong and Yun-Poong and then cultured on MS medium supplemented with 7% sucrose. The frequency of single somatic embryo formation was strongly enhanced when Chun-Poong cotyledons were subjected to plasmolysis with 0.1–0.5 M sucrose for 24 h and Yun-Poong cotyledons to plasmolysis with 1.0 M sucrose for 24 h and then cultured on MS medium with 2,4-D.  相似文献   

13.
Culture of protoplast using cotyledon and hypocotyl as the donor tissue from true potato seedlings (TPSs) of 3 breeding lines (DTO-33, ND 860-2 and BN 9815-3) of Solanum tuberosum L. was studied. The cotyledons and hypocotyls of TPSs just extended were excised and digested in an enzyme solution containing 1 % cellulase and 0. 5 % macerozyme for 17—20 h after vacuum infiltration of the tissue in the solution. The protoplasts were cultured in an improved liquid medium and transferred onto solid media for callus culture and shoot regeneration. Some factors affecting the efficiency of cotyledon and hypocotyl protoplast culture were studied. The results showed that using the cotyledons and hypocotyls as donor tissues for protoplast isolation and culture in potato, the division frequency of protoplast derived cells was significantly higher than that using the leaves and shoot-tips of the test-tube plantlets: the yield and quality of the protoplast from TPSs cultured under continuous high light intensity (3000 Ix) were much higher than the TPSs cultured under low light intensity (1000 Ix), and no intact protoplast was ever obtained from the TPSs cultured in continuous dark condition. Vacuum infiltration of the cotyledon and hypocotyl segments in enzyme solution before digestion increased protoplast yield. The yield of protoplasts from hypocotyl tissue was significantly higher than from the cotyledon, but there was no significant difference in quality between the protoplast derived from the two tissues. The significance, advantages and shortcomings of using the cotyledons and hypocotyls as the donor tissues for isolation and culture of potato protoplasts are dicussed.  相似文献   

14.
Bovine blastocysts were produced using 6 different systems: 5 commonly used in vitro culture systems (synthetic oviduct fluid medium - SOF- without fetal calf serum, SOF supplemented with 10% serum for the entire culture period, SOF supplemented with 10% serum from Day 4 of culture, M199 coculture with bovine oviduct epithelial cells, M199 coculture with granulosa cell monolayer) and 1 in vivo culture system involving collection of blastocysts from superovulated bovine donors at Day 7. Zygotes obtained from IVM/IVF were assigned randomly to 1 of the 5 systems tested and were cultured for 9 d (Day 0= day of insemination). Cleavage, development to the blastocyst stage and blastocyst sex ratio were assessed in all treatments. In addition, the effect of the IVC system on the kinetics of blastocyst development and sex ratio was assessed on Days 6, 7, 8, and 9. The presence of fetal calf serum in SOF not only resulted in faster development (19.1% of blastocysts in SOF supplemented with serum vs 7.1% in absence of serum at Day 6; P < 0.05) and increased blastocyst production (47.5% of blastocysts in SOF supplemented with serum vs 34.4% in absence of serum; P < 0.05) but it also enhanced overall male survival. The coculture systems produced fewer blastocysts than culture in SOF (27.6 to 28.3% in coculture vs 47.5% in SOF supplemented with serum; P < 0.05), but similar to SOF without fetal calf serum, they had no effect on blastocyst sex ratio.  相似文献   

15.
Summary Cotyledon explants of Panax ginseng at various developmental stages were cultured on Murashige and Skoog (MS) medium with 0.5 μM indole butyric acid and 8.8 μM N6-benzyladenine. Upon culturing of cotyledon explants from mature zygotic embryos, 34% of the explants formed somatic embryos, and 46% formed adventitious shoots. In the cotyledon explants from 1-wk-old seedlings, embryo axis-like shoots and roots developed at a high frequency (79%) near the excised portion of the cotyledon base. The developmental pattern of embryo axis-like organ formation was structurally different from that of somatic embryos and adventitious shoots but similar to that of parts of the embryo axis of zygotic embryos. In the early stages of embryo axis-like organ formation, epicotyl-like shoot primordia were developed directly from the cotyledon base after 2 wk of culture; subsequently roots developed near the base of the epicotyl-like shoots and eventually regenerated into plantlets with both shoots and roots. The frequency of embryo axis-like organ formation declined as the growth of seedlings proceeded. In addition, the frequency of somatic embryo and adventitious bud formation rapidly declined with the age of the cotyledons. Plant regeneration via embryo axis-like organ formation might be a new pattern of morphogenesis in P. ginseng cotyledon culture.  相似文献   

16.
We elucidated the relationship between cell proliferation and somatic embryogenesis in the culture of carrot cotyledons. Fresh weights of the cotyledon expiants were determined every five days while being cultured on a medium containing 2,4-D. Callus production increased exponentially from Day 20 to Day 25, showing a two-fold rate of proliferation. To examine the embryogenic potential of the callus, we pre-cultured cotyledon explants on an MS medium with 2,4-D, then transferred them to an MS basal medium at five-day intervals. Somatic embryos formed most frequently when the cotyledons were pre-cultured for 20 days on an MS medium that contained 5 μ2,4-D. The frequency of somatic embryo formation was 81%, while that of normal embryos with two cotyledons was 51% among those formed on a hormone-free medium. We used FACScan analysis to relate the embryogenic potential of the callus to the S phase in the cell cycle of cultured cells. The S phase was high after 25 days of culture on the medium with 5 μM 2,4-D. In contrast, the frequency of normal embryogenesis was higher at Day 20 of the pre-culture period. Culturing embryogenic calli on a medium with 5 μM 2,4-D was most favorable for producing somatic embryos with two cotyledons. We verified that active somatic embryogenesis was apparently related to cell division activity; somatic embryos induced from actively dividing cells were apt to accompany cotyledonary abnormality.  相似文献   

17.
Most current in vitro production systems terminate at the blastocyst stage in cattle. The goal of the present research was to identify culture conditions that support individual blastocyst survival and interferon-tau (IFNT) production in cattle. In the first study, two media (medium 199 [M199] and potassium simplex optimized medium [KSOM]) and two oxygen tensions (5 and 20%) were compared for their ability to sustain blastocyst survival and IFNT production from days 8 to 11 post-insemination. Survival and total cell numbers were greater (P<0.05) for blastocysts cultured in M199 in a 5% oxygen environment compared with other medium and oxygen treatment combinations. Serum supplementation was required for blastocyst survival and IFNT production. IFNT concentrations in conditioned medium were similar for blastocysts cultured in M199 or KSOM, but blastocysts incubated in 5% oxygen produced less (P<0.001) IFNT than their 20% oxygen counterparts. Oxidative stress was not responsible for the increase in IFNT concentrations. Supplementation with fibroblast growth factor 2 did not affect cell numbers but increased (P<0.02) IFNT concentrations for blastocysts cultured in 5% oxygen but not those cultured in 20% oxygen. In conclusion, culturing blastocysts of cattle in a 5% oxygen environment with M199 containing serum sustains embryo viability and permits constitutive and inducible IFNT production. Incubation in 20% oxygen increases IFNT production. The mechanism responsible for this event and its physiological relevance to conceptus development in utero remain unknown.  相似文献   

18.
Wild-type plants of Arabidopsis thaliana strain Columbia regenerated at a high frequency from immature cotyledons cultured on a shoot-inducing medium containing 1.0 mg/l 6-benzylaminopurine and 0.1 mg/l 1-naphthaleneacetic acid. Cotyledon segments expanded rapidly and produced numerous shoots after 2–3 weeks in culture. Regeneration occurred in the absence of the original shoot apex. Hypocotyl segments from immature embryos produced root hairs and callus in culture but only rarely developed shoots. Hygromycin, kanamycin and G-418 inhibited cotyledon expansion and shoot formation in culture. Vancomycin was much less toxic to cotyledon segments than either carbenicillin or cefotaxime. Immature cotyledons therefore yield numerous regenerated plants that may be useful in future transformation studies.  相似文献   

19.
In this study, we evaluated a serum replacer (SR; Knockout SR, Invitrogen) in our in vitro culture systems. We hypothesized that SR would benefit bovine embryo development, since SR supported survival of embryonic stem cells (which originate from embryos). Experiment 1 compared oocyte maturation with SR versus fetal bovine serum (FBS). Following fertilization, blastocyst development was lower for oocytes matured with SR (21.5 versus 34.1, P<0.05). Experiment 2 evaluated SR for culturing embryos. Following fertilization, embryos were cultured for 3 days in KSOM, and then assigned to treatments: (1) KSOM static culture (KNM); (2) fresh KSOM (KD3); (3) KSOM+SR or (4) KSOM+FBS and cultured to Day 7 (fertilization=Day 0). Blastocyst development in FBS or SR was higher than either KNM or KD3 (48.2, 47.2, 32.7, and 35.5, respectively, P<0.05). Experiment 3 evaluated cryosurvival of embryos cultured in the same manner as Experiment 2. On Day 7, embryos were vitrified and upon warming, embryos cultured in SR had greater 24h survival rates (70.6%) than all other treatments (P<0.05). Finally, Experiment 4 evaluated effects of SR on pregnancy rate and development to term. Culture in SR was not detrimental to pregnancy or calving rates (50 and 50%, respectively), and SR calves had normal birth weights (mean=38.8 kg+/-1.5). In conclusion, the use of SR for maturation of oocytes was not beneficial; however, SR enhanced embryo culture by improving development in vitro, cryotolerance and survival, effectively replacing serum in culture.  相似文献   

20.
Hairy nightshade (Solanum sarrachoides) has the potential to be a model system for the study of plant-pathogen interactions, however, the availability of tissue culture and transformation methods would strengthen its utility. For the development of tissue culture methods, we investigated, explant type (cotyledons, hypocotyls, roots), hypocotyl explant origin, cotyledon orientation (abaxial vs. adaxial) in direct contact with the medium, gelling agents (agar and agargel) and cytokinins (zeatin and 6-benzyladenine) at different concentrations. Cotyledon explants resulted in the greatest biomass as compared to root and hypocotyl. As for hypocotyl explant origin, explants proximal to the cotyledons had a significant effect on plant regeneration. However, cotyledon orientation and gelling agent had no effect on plant regeneration. Medium supplemented with either zeatin or 6-benzyladenine at 1 mg L−1 resulted in significant shoot regeneration. Shoots rooted readily when cultured on a non-hormone based rooting medium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号