首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Yeast cell-surface display—applications of molecular display   总被引:11,自引:0,他引:11  
In a cell-surface engineering system established using the yeast Saccharomyces cerevisiae, novel, so-called arming yeasts are constructed that are armed with biocatalysts in the form of enzymes, functional proteins, antibodies, and combinatorial protein libraries. Among the many advantages of the system, in which proteins are genetically displayed on the cell surface, are easy reproduction of the displayed biocatalysts and easy separation of product from catalyst. As proteins and peptides of various kinds can be displayed on the yeast cell surface, the system is expected to allow the preparation of tailor-made functional proteins. With its ability to express many of the functional proteins necessary for post-translational modification and in a range of different sizes, the yeast-based molecular display system appears uniquely useful among the various display systems so far developed. Capable of conferring novel additional abilities upon living cells, cell-surface engineering heralds a new era of combinatorial bioengineering in the field of biotechnology. This mini-review describes molecular display using yeast and its various applications.  相似文献   

2.
Genetic immobilization of proteins on the yeast cell surface   总被引:15,自引:0,他引:15  
A genetic system has been exploited to immobilize proteins in their active and functional forms on the cell surface of yeast, Saccharomyces cerevisiae. DNAs encoding proteins with a secretion signal peptide were fused with the genes encoding yeast agglutinins, a- and alpha-type proteins involved in mating. The fusion gene was introduced into S. cerevisiae and expressed under the control of several promoters. Appearance of the fused proteins expressed on the cell surface was demonstrated biochemically and by immunofluorescence and immunoelectron microscopy techniques. Alpha-galactosidase from Cyamopsis tetragonoloba seeds, peptide libraries including scFv and variable regions of the T cell receptor from mammalian cells have been successfully immobilized on the yeast cell wall in the active form. Recently, surface-engineered yeasts have been constructed by immobilizing the enzymes and a functional protein, for example, green fluorescent protein (GFP) from Aequorea victoria. The yeasts were termed 'arming yeasts' with biocatalysts or functional proteins. Such arming cells displaying glucoamylase from Rhizopus oryzae and alpha-amylase from Bacillus stearothermophilus, or carboxymethylcellulase and beta-glucosidase from Aspergillus acleatus, could assimilate starch or cellooligosaccharides as the sole carbon source, although S. cerevisiae cannot intrinsically assimilate these substrates. GFP-arming cells can emit green fluorescence from the cell surface in response to the environmental conditions. The approach described in this review will enable us to endow living cells, including yeast cells, with novel additional abilities and to open new dimensions in the field of biotechnology.  相似文献   

3.
The application of enzymes as biocatalysts in industrial processes has great potential due to their outstanding stereo-, regio- and chemoselectivity. Using autodisplay, enzymes can be immobilized on the cell surface of Gram-negative bacteria such as Escherichia coli. In the present study, the surface display of an alcohol dehydrogenase (ADH) and a cyclohexanone monooxygenase (CHMO) on E. coli was investigated. Displaying these enzymes on the surface of E. coli resulted in whole-cell biocatalysts accessible for substrates without further purification. An apparent maximal reaction velocity VMAX(app) for the oxidation of cyclohexanol with the ADH whole-cell biocatalysts was determined as 59.9 mU ml−1. For the oxidation of cyclohexanone with the CHMO whole-cell biocatalysts a VMAX(app) of 491 mU ml−1 was obtained. A direct conversion of cyclohexanol to ε-caprolactone, which is a known building block for the valuable biodegradable polymer polycaprolactone, was possible by combining the two whole-cell biocatalysts. Gas chromatography was applied to quantify the yield of ε-caprolactone. 1.12 mM ε-caprolactone was produced using ADH and CHMO displaying whole-cell biocatalysts in a ratio of 1:5 after 4 h in a cell suspension of OD578nm 10. Furthermore, the reaction cascade as applied provided a self-sufficient regeneration of NADPH for CHMO by the ADH whole-cell biocatalyst.  相似文献   

4.
Strategies and perspectives for genetic improvement of wine yeasts   总被引:1,自引:0,他引:1  
Recent developments in expression profile and proteomic techniques illustrated that the main oenological traits of wine yeasts are complex and influenced by several genes, each of them identified as absolutely essential. Only for monogenic properties the genetic improvement programmes of wine yeasts can be performed by alteration of individual genes. Ideally the most productive way of improving the whole-cell biocatalysts is by evolution of the entire cell genome. In this article we briefly review the main genetic improvement techniques applied in new and optimised wine strains construction, paying particular attention to blind and whole genome strategies, such as the sexual recombination and genome shuffling.  相似文献   

5.
Cell surface display of proteins/peptides has been established based on mechanisms of localizing proteins to the cell surface. In contrast to conventional intracellular and extracellular (secretion) expression systems, this method, generally called an arming technology, is particularly effective when using yeasts as a host, because the control of protein folding that is often required for the preparation of proteins can be natural. This technology can be employed for basic and applied research purposes. In this review, I describe various strategies for the construction of engineered yeasts and provide an outline of the diverse applications of this technology to industrial processes such as the production of biofuels and chemicals, as well as bioremediation and health-related processes. Furthermore, this technology is suitable for novel protein engineering and directed evolution through high-throughput screening, because proteins/peptides displayed on the cell surface can be directly analyzed using intact cells without concentration and purification. Functional proteins/peptides with improved or novel functions can be created using this beneficial, powerful, and promising technique.  相似文献   

6.
To combine the advantage of the oleaginous yeast Yarrowia lipolytica with the high activity of some fungal lipases for oily wastewater treatment, an effective lipase-displaying arming yeast was constructed using the flocculation functional domain of Saccharomyces cerevisiae as the protein anchor. To estimate the effect of the whole-cell oily wastewater treatment, the lipase-displaying arming yeast was added into an open activated sludge bioreactor. Within 72 h of whole-cell treatment, 96.9% of oil and 97.6% of chemical oxygen demand (COD) were removed, while only 87.1% of oil and 91.8% of COD were removed in control A (Y. lipolytica Polg was added), 45.1% of oil and 67.5% of COD were removed in control B (no cell was added) in 72 h. The lipase-displaying arming yeast exhibited remarkable oil removal and COD degradation effect compared with the control samples, exemplifying its application potential.  相似文献   

7.
Yeast whole-cell biocatalysts for lipase-catalyzed reactions were constructed by intracellularly overproducing Rhizopus oryzae lipase (ROL) in Saccharomvces cerevisiae MT8-1. The gene encoding lipase from R. orvzae IFO4697 was cloned, and intracellular overproduction systems of a recombinant ROL with a pro-sequence (rProROL) were constructed. When rProROL from R. oryzae IFO4697 was produced under the control of the 5'-upstream region of the isocitrate lyase gene of Candida tropicalis (UPR-ICL) at 30 degrees C for 98 h by two-stage cultivation using SDC medium (SD medium with 2% casamino acids) containing 2.0% and 0.5% glucose, intracellular lipase activity reached levels up to 474.5 IU/l. These whole-cell biocatalysts were permeabilized by air-drying and used for the synthesis of methyl esters (MEs), a potential biodiesel fuel, from plant oil and methanol in a solvent-free and water-containing system. The ME content in the reaction mixture was 71 wt% after a 165-h reaction at 37 degrres C with stepwise addition of methanol. These results indicate that an efficient whole-cell biocatalyst can be prepared by intracellular overproduction of lipase in yeast cells and their permeabilization.  相似文献   

8.
A fed-batch culture strategy for the production of recombinant Escherichia coli cells anchoring surface-displayed transglucosidase for use as a whole-cell biocatalyst for α-arbutin synthesis was developed. Lactose was used as an inducer of the recombinant protein. In fed-batch cultures, dissolved oxygen was used as the feed indicator for glucose, thus accumulation of glucose and acetate that affected the cell growth and recombinant protein production was avoided. Fed-batch fermentation with lactose induction yielded a biomass of 18 g/L, and the cells possessed very high transglucosylation activity. In the synthesis of α-arbutin by hydroquinone glucosylation, the whole-cell biocatalysts showed a specific activity of 501 nkat/g cell and produced 21 g/L of arbutin, which corresponded to 76% molar conversion. A sixfold increased productivity of whole cell biocatalysts was obtained in the fed-batch culture with lactose induction, as compared to batch culture induced by IPTG.  相似文献   

9.
Proximity effect is a form of synergistic effect exhibited when cellulases work within a short distance from each other, and this effect can be a key factor in enhancing saccharification efficiency. In this study, we evaluated the proximity effect between 3 cellulose-degrading enzymes displayed on the Saccharomyces cerevisiae cell surface, that is, endoglucanase, cellobiohydrolase, and β-glucosidase. We constructed 2 kinds of arming yeasts through genome integration: ALL-yeast, which simultaneously displayed the 3 cellulases (thus, the different cellulases were near each other), and MIX-yeast, a mixture of 3 kinds of single-cellulase-displaying yeasts (the cellulases were far apart). The cellulases were tagged with a fluorescence protein or polypeptide to visualize and quantify their display. To evaluate the proximity effect, we compared the activities of ALL-yeast and MIX-yeast with respect to degrading phosphoric acid-swollen cellulose after adjusting for the cellulase amounts. ALL-yeast exhibited 1.25-fold or 2.22-fold higher activity than MIX-yeast did at a yeast concentration equal to the yeast cell number in 1 ml of yeast suspension with an optical density (OD) at 600 nm of 10 (OD10) or OD0.1. At OD0.1, the distance between the 3 cellulases was greater than that at OD10 in MIX-yeast, but the distance remained the same in ALL-yeast; thus, the difference between the cellulose-degrading activities of ALL-yeast and MIX-yeast increased (to 2.22-fold) at OD0.1, which strongly supports the proximity effect between the displayed cellulases. A proximity effect was also observed for crystalline cellulose (Avicel). We expect the proximity effect to further increase when enzyme display efficiency is enhanced, which would further increase cellulose-degrading activity. This arming yeast technology can also be applied to examine proximity effects in other diverse fields.  相似文献   

10.
Viable microbial cells are important biocatalysts in the production of fine chemicals and biofuels, in environmental applications and also in emerging applications such as biosensors or medicine. Their increasing significance is driven mainly by the intensive development of high performance recombinant strains supplying multienzyme cascade reaction pathways, and by advances in preservation of the native state and stability of whole-cell biocatalysts throughout their application. In many cases, the stability and performance of whole-cell biocatalysts can be highly improved by controlled immobilization techniques. This review summarizes the current progress in the development of immobilized whole-cell biocatalysts, the immobilization methods as well as in the bioreaction engineering aspects and economical aspects of their biocatalytic applications.  相似文献   

11.
Expression of proteins on the surface of yeasts has a wide range of applications in biotechnology, such as directed evolution of proteins for increased affinity and thermal stability, screening of antibody libraries, epitope mapping, and use as whole-cell biocatalysts. However, hyperglycosylation can interfere with overall protein accessibility on the surface. Therefore, the less elaborate hyperglycosylation in wild type Pichia pastoris and the availability of glycoengineered strains make this yeast an excellent alternative for surface display of glycoproteins. Here, we report the implementation of the well-established a-agglutinin-based yeast surface display technology in P. pastoris. Four heterologous proteins were expressed on the surface of a wild type and a glycoengineered strain. Surface display levels were monitored by Western blot, immunofluorescence microscopy, and FACS analysis. The availability of glycoengineered strains makes P. pastoris an excellent alternative for surface display of glycoproteins and paves the way for new applications. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

12.
We isolated the lipase B from Candida antarctica CBS 6678 (CALB CBS6678) and successfully constructed CALB-displaying yeast whole-cell biocatalysts using the Flo1p short (FS) anchor system. For the display of CALB on a yeast cell surface, the newly isolated CALB CBS6678 exhibited higher hydrolytic and ester synthesis activities than the well-known CALB, which is registered in GenBank (Z30645). A protease accessibility assay using papain as a protease showed that a large part of CALB, approximately 75%, was localized on an easily accessible part of the yeast cell surface. A comparison of the lipase hydrolytic activities of yeast whole cells displaying only mature CALB (CALB) and those displaying mature CALB with a Pro region (ProCALB) revealed that mature CALB is preferable for yeast cell surface display using the Flo1p anchor system. Lyophilized yeast whole cells displaying CALB were applied to an ester synthesis reaction at 60°C using adipic acid and n-butanol as substrates. The amount of dibutyl adipate (DBA) produced increased with the reaction time until 144 h. This indicated that CALB displayed on the yeast cell surface retained activity under the reaction conditions.  相似文献   

13.
Chiral amines are important for the chemical and pharmaceutical industries, and there is rapidly growing interest to use transaminases for their synthesis. Since the cost of the enzyme is an important factor for process economy, the use of whole-cell biocatalysts is attractive, since expensive purification and immobilization steps can be avoided. Display of the protein on the cell surface provides a possible way to reduce the mass transfer limitations of such biocatalysts. However, transaminases need to dimerize in order to become active, and furthermore, they require the cofactor pyridoxal phosphate; consequently, successful transaminase surface expression has not been reported thus far. In this work, we produced an Arthrobacter citreus ω-transaminase in Escherichia coli using a surface display vector based on the autotransporter adhesin involved in diffuse adherence (AIDA-I), which has previously been used for display of dimeric proteins. The correct localization of the transaminase in the E. coli outer membrane and its orientation toward the cell exterior were verified. Furthermore, transaminase activity was detected exclusively in the outer membrane protein fraction, showing that successful dimerization had occurred. The transaminase was found to be present in both full-length and proteolytically degraded forms. The removal of this proteolysis is considered to be the main obstacle to achieving sufficient whole-cell transaminase activity.  相似文献   

14.
A large biotechnological potential is inherent in the display of proteins (e.g., enzymes, single-chain antibodies, on the surface of bacterial cells) (Georgiou et al., 1993). Applications such as immobilized whole-cell biocatalysts or cellular adsorbents require cell fixation to prevent disintegration, stabilization of the anchored protein from leakage, denaturation or proteolysis, and total loss of cell viability, preventing medium and potential product contamination with cells. In this article we describe the adaptation of a simple two-stage chemical crosslinking procedure based on "bi-layer encagement" (Tor et al., 1989) for stabilizing Escherichia coli cells expressing an Lpp-OmpA (46-159)-beta-lactamase fusion that displays beta-lactamase on the cell surface. Bilayer crosslinking and coating the bacteria with a polymeric matrix is accomplished by treating the cells first with either glutaraldehyde or polyglutaraldehyde, followed by secondary crosslinking with polyacrylamide hydrazide. These treatments resulted in a 5- to 25-fold reduction of the thermal inactivation rate constant at 55 degrees C of surface anchored beta-lactamase and completely prevented the deterioration of the cells for at least a week of storage at 4 degrees C. The stabilization procedure developed paves the way to scalable biotechnological applications of E. coli displaying surface anchored proteins as whole-cell biocatalysts and adsorbents. (c) 1996 John Wiley & Sons, Inc.  相似文献   

15.
The development of efficient tools is required for the eco-friendly detoxification and effective detection of neurotoxic organophosphates (OPs). Although enzymes have received significant attention as biocatalysts because of their high specific activity, the uneconomic and labor-intensive processes of enzyme production and purification make their broad use in practical applications difficult. Because whole-cell systems offer several advantages compared with free enzymes, including high stability, a reduced purification requirement, and low preparation cost, they have been suggested as promising biocatalysts for the detoxification and detection of OPs. To develop efficient whole-cell biocatalysts with enhanced activity and a broad spectrum of substrate specificity, several factors have been considered, namely the selected strains, the chosen OP-hydrolyzing enzymes, where enzymes are localized in a cell, and which enhancer will assist the expression, function, and folding of the enzyme. In this article, we review the current investigative progress in the development of engineered whole-cell biocatalysts with excellent OP-hydrolyzing activity, a broad spectrum of substrate specificity, and outstanding stability for the detoxification and detection of OPs.  相似文献   

16.

Background  

For industrial bioconversion processes, the utilization of surface-displayed lipase in the form of whole-cell biocatalysts is more advantageous, because the enzymes are displayed on the cell surface spontaneously, regarded as immobilized enzymes.  相似文献   

17.
In order to develop a method for producing fuel ethanol from cassava pulp using cell surface engineering (arming) technology, an arming yeast co-displaying α-amylase (α-AM), glucoamylase, endoglucanase, cellobiohydrase, and β-glucosidase on the surface of the yeast cells was constructed. The novel yeast strain, possessing the activities of all enzymes, was able to produce ethanol directly from soluble starch, barley β-glucan, and acid-treated Avicel. Cassava is a major crop in Southeast Asia and used mainly for starch production. In the starch manufacturing process, large amounts of solid wastes, called cassava pulp, are produced. The major components of cassava pulp are starch (approximately 60%) and cellulose fiber (approximately 30%). We attempted simultaneous saccharification and ethanol fermentation of cassava pulp with this arming yeast. During fermentation, ethanol concentration increased as the starch and cellulose fiber substrates contained in the cassava pulp decreased. The results clearly showed that the arming yeast was able to produce ethanol directly from cassava pulp without addition of any hydrolytic enzymes.  相似文献   

18.
Selection of a whole-cell biocatalyst for methyl parathion biodegradation   总被引:1,自引:0,他引:1  
Whole-cell biocatalyst has the potential to become a cost-effective alternative to conventional enzyme methods for solving ecological and energy issues. However, cytosolic-expressing biocatalyst systems are critically disadvantaged due to the low permeability of the cell membrane. To overcome substrate transport barrier, periplasmic secretion and surface display biocatalysts were developed by expressing signal peptides or anchor proteins in Escherichia coli. In this work, six carriers were compared in regard to whole-cell activity of methyl parathion hydrolase (MPH). Our results indicate that the surface display systems yielded one to three times whole-cell activity than the periplasmic secretion systems. Although periplasmic secretion systems showed generally more stable than surface display systems, surface display appeared more suitable for whole-cell biocatalyst. It should note that the applicability of the DsbA/PhoA/AIDA-I leader to MPH expression is shown here for the first time. In addition, the result provided a useful reference for other whole-cell biocatalyst selection.  相似文献   

19.
A whole-cell technology for detoxification of organophosphates based on genetically engineered Escherichia coli cell expressing both cellulose-binding domain (CBD) and organophosphorus hydrolase (OPH) onto cell surface was reported recently (Wang et al., 2002). This study reports the application of these biocatalysts when immobilized in a cellulose hollow fiber bioreactor (HFB) for the biodetoxification of a model organophosphate, paraoxon, in a continuous flow mode. In 24 h, 0.79 mg wet cell/cm2 fiber surface were immobilized onto cellulose fibers specifically and strongly through the cellulose binding domain, forming a monolayer demonstrated by Scanning Electronic Micrograph, and essentially no cell was washed away by washing buffer. The immobilized biocatalyst had a high performance of detoxifying paraoxon solution of 5,220 mumol/h x L reactor or 990 mumol/h x m2 reactor. The immobilized biocatalysts maintained a stable degradation capacity for 15 uses over a period of 48 days with only 10% decline in degradation efficiency under operating and storage conditions. In addition, the bioreactor was easily regenerated by washing with 1% sodium dodecyl sulfate (SDS), with 86.7% immobilization capacity and 93.9% degradation efficiency recovery. This is the first report using the HFB in a non-traditional way, immobilizing whole-cell biocatalysts by specific adhesion thus rendering the catalysis operation the advantages of low pressure drop, low shear force, and low energy requirement. The successful application of this genetically engineered dual functional E. coli strain in a model bioreactor shows its promise in large-scale detoxification of organophosphate nerve agents in bulk liquid phase.  相似文献   

20.
Immobilization of biocatalysts with poly(vinyl alcohol) supports.   总被引:1,自引:0,他引:1  
Two polymer materials, poly(vinyl alcohol) (PVA) superfine fibers and photocrosslinkable PVA bearing styrylpyridinium groups, have been developed to immobilize biocatalysts. The former has a large surface consisting of relatively large-size pores and the fibers can immobilize a large amount of biocatalyst on their surface by ionic interaction. The latter entraps many kinds of biocatalysts by cyclodimerization caused by visible light irradiation. The biocatalysts on/in these supports maintain high activity and thermal stability. These materials can easily be formed into various shapes suitable for various applications. A new bioreactor system was constructed for evaluating a variety of biocatalysts and supports.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号