首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Heterotrimeric G proteins are involved in the transduction of hormonal and sensory signals across plasma membranes of eukaryotic cells. Hence, they are a critical point of control for a variety of agents that modulate cellular function. Activation of these proteins is dependent on GTP binding to their alpha (Galpha) subunits. Regulators of G protein signaling (RGS) bind specifically to activated Galpha proteins, potentiating the intrinsic GTPase activity of the Galpha proteins and thus expediting the termination of Galpha signaling. Although there are several points in most G protein controlled signaling pathways that are affected by reversible covalent modification, little evidence has been shown addressing whether or not the functions of RGS proteins are themselves regulated by such modifications. We report in this study the acute functional regulation of RGS10 thru the specific and inducible phosphorylation of RGS10 protein at serine 168 by cAMP-dependent kinase A. This phosphorylation nullifies the RGS10 activity at the plasma membrane, which controls the G protein-dependent activation of the inwardly rectifying potassium channel. Surprisingly, the phosphorylation-mediated attenuation of RGS10 activity was not manifested in an alteration of its ability to accelerate GTPase activity of Galpha. Rather, the phosphorylation event correlates with translocation of RGS10 from the plasma membrane and cytosol into the nucleus.  相似文献   

2.
Functional roles of the NH(2)-terminal region of RGS (regulators of G protein signaling) 8 in G protein signaling were studied. The deletion of the NH(2)-terminal region of RGS8 (DeltaNRGS8) resulted in a partial loss of the inhibitory function in pheromone response of yeasts, although Galpha binding was not affected. To examine roles in subcellular distribution, we coexpressed two fusion proteins of RGS8-RFP and DeltaNRGS8-GFP in DDT1MF2 cells. RGS8-RFP was highly concentrated in nuclei of unstimulated cells. Coexpression of constitutively active Galpha(o) resulted in translocation of RGS8 protein to the plasma membrane. In contrast, DeltaNRGS8-GFP was distributed diffusely through the cytoplasm in the presence or absence of active Galpha(o). When coexpressed with G protein-gated inwardly rectifying K(+) channels, DeltaNRGS8 accelerated both turning on and off similar to RGS8. Acute desensitization of G protein-gated inwardly rectifying K(+) current observed in the presence of RGS8, however, was not induced by DeltaNRGS8. Thus, we, for the first time, showed that the NH(2) terminus of RGS8 contributes to the subcellular localization and to the desensitization of the G protein-coupled response.  相似文献   

3.
4.
RGS (regulators of G-protein signaling) proteins comprise a large family that modulates heterotrimeric G-protein signaling. This protein family has a common RGS domain and functions as GTPase-activating proteins for the alpha-subunits of heterotrimeric G-proteins located at the plasma membrane. RGS8 was identified as a neuron-specific RGS protein, which belongs to the B/R4 subfamily. We previously showed that RGS8 protein was translocated to the plasma membrane from the nucleus on coexpression of GTPase-deficient Galphao (GalphaoQL). Here, we first examined which subtypes of Galpha can induce the translocation of RGS8. When the Galphai family was expressed, the translocation of RGS8 did occur. To investigate the mechanism of this translocation, we generated a mutant RGS8 with reduced affinity to Galphao and an RGS-insensitive (RGS-i) mutant of GalphaoQL. Co-expression experiments with both mutants revealed that disruption of the Galpha-RGS8 interaction abolished the membrane-translocation of RGS8 despite the apparent membrane localization of RGS-i GalphaoQL. These results demonstrated that RGS8 is recruited to the plasma membrane where G-proteins are activated mainly by direct association with Galpha.  相似文献   

5.
To identify novel regulators of Galpha(o), the most abundant G-protein in brain, we used yeast two-hybrid screening with constitutively active Galpha(o) as bait and identified a new regulator of G-protein signaling (RGS) protein, RGS17 (RGSZ2), as a novel human member of the RZ (or A) subfamily of RGS proteins. RGS17 contains an amino-terminal cysteine-rich motif and a carboxyl-terminal RGS domain with highest homology to hRGSZ1- and hRGS-Galpha-interacting protein. RGS17 RNA was strongly expressed as multiple species in cerebellum and other brain regions. The interactions between hRGS17 and active forms of Galpha(i1-3), Galpha(o), Galpha(z), or Galpha(q) but not Galpha(s) were detected by yeast two-hybrid assay, in vitro pull-down assay, and co-immunoprecipitation studies. Recombinant RGS17 acted as a GTPase-activating protein (GAP) on free Galpha(i2) and Galpha(o) under pre-steady-state conditions, and on M2-muscarinic receptor-activated Galpha(i1), Galpha(i2), Galpha(i3), Galpha(z), and Galpha(o) in steady-state GTPase assays in vitro. Unlike RGSZ1, which is highly selective for G(z), RGS17 exhibited limited selectivity for G(o) among G(i)/G(o) proteins. All RZ family members reduced dopamine-D2/Galpha(i)-mediated inhibition of cAMP formation and abolished thyrotropin-releasing hormone receptor/Galpha(q)-mediated calcium mobilization. RGS17 is a new RZ member that preferentially inhibits receptor signaling via G(i/o), G(z), and G(q) over G(s) to enhance cAMP-dependent signaling and inhibit calcium signaling. Differences observed between in vitro GAP assays and whole-cell signaling suggest additional determinants of the G-protein specificity of RGS GAP effects that could include receptors and effectors.  相似文献   

6.
Atrial natriuretic peptide (ANP) inhibits the proliferation of many cells, in part through interfering with signal transduction enacted by G protein-coupled growth factor receptors. Signaling interactions between ANP and the G protein-coupled growth factor receptor ligand, endothelin-3 (ET-3), regulate astrocyte proliferation at a very proximal but undefined point. Here, we find that ANP inhibits the ability of ET-3 to activate Galpha(q) and Galpha(i) in these cells. ANP stimulated the translocation of endogenous regulators of G protein-signaling (RGS) proteins 3 and 4 from the cytosol to the cell membrane, and enhanced their association with Galpha(q) and Galpha(i). ANP effects were significantly blocked by HS-142-1, an inhibitor of guanylate cyclase activation, or by ET-3. KT5823, an inhibitor of cyclic GMP-dependent protein kinase (PKG) reversed the RGS translocation induced by ANP; conversely, expression of an active catalytic subunit of PKG-I, or 8-bromo-cyclic GMP stimulated RGS translocation. ANP caused the phosphorylation of both RGS proteins in a PKG-dependent fashion, and the expressed PKG (in the absence of ANP) also stimulated RGS phosphorylation. A novel cross-talk between PKG and RGS proteins is stimulated by ANP and leads to the increased translocation and association of RGS proteins with Galpha. The rapid inactivation of G proteins provides a mechanism by which ANP inhibits downstream signaling to the cell proliferation program.  相似文献   

7.
Clark MA  Sethi PR  Lambert NA 《FEBS letters》2007,581(4):764-770
RGS proteins accelerate the GTPase activity of heterotrimeric G proteins at the plasma membrane. Association of RGS proteins with the plasma membrane can be mediated by interactions with other membrane proteins and by direct interactions with the lipid bilayer. Here we use fluorescence recovery after photobleaching (FRAP) to characterize interactions between RGS2 and M3 acetylcholine receptors (M3Rs), Galpha subunits and the lipid bilayer. Active Galpha(q) and M3Rs both recruited RGS2-EGFP to the plasma membrane. RGS2-EGFP remained bound to the plasma membrane between interactions with active Galpha(q), but rapidly exchanged between membrane-associated and cytosolic pools when recruited by M3Rs.  相似文献   

8.
RGS proteins act as negative regulators of G protein signaling by serving as GTPase-activating proteins (GAP) for alpha subunits of heterotrimeric G proteins (Galpha), thereby accelerating G protein inactivation. RGS proteins can also block Galpha-mediated signal production by competing with downstream effectors for Galpha binding. Little is known about the relative contribution of GAP and effector antagonism to the inhibitory effect of RGS proteins on G protein-mediated signaling. By comparing the inhibitory effect of RGS2, RGS3, RGS5, and RGS16 on Galpha(q)-mediated phospholipase Cbeta (PLCbeta) activation under conditions where GTPase activation is possible versus nonexistent, we demonstrate that members of the R4 RGS subfamily differ significantly in their dependence on GTPase acceleration. COS-7 cells were transiently transfected with either muscarinic M3 receptors, which couple to endogenous Gq protein and mediate a stimulatory effect of carbachol on PLCbeta, or constitutively active Galphaq*, which is inert to GTP hydrolysis and activates PLCbeta independent of receptor activation. In M3-expressing cells, all of the RGS proteins significantly blunted the efficacy and potency of carbachol. In contrast, Galphaq* -induced PLCbeta activation was inhibited by RGS2 and RGS3 but not RGS5 and RGS16. The observed differential effects were not due to changes in M3, Galphaq/Galphaq*, PLCbeta, or RGS expression, as shown by receptor binding assays and Western blots. We conclude that closely related R4 RGS family members differ in their mechanism of action. RGS5 and RGS16 appear to depend on G protein inactivation, whereas GAP-independent mechanisms (such as effector antagonism) are sufficient to mediate the inhibitory effect of RGS2 and RGS3.  相似文献   

9.
RGS (regulators of G protein signaling) proteins are GTPase-activating proteins for the Galpha subunits of heterotrimeric G proteins and act to regulate signaling by rapidly cycling G protein. RGS proteins may integrate receptors and signaling pathways by physical or kinetic scaffolding mechanisms. To determine whether this results in enhancement and/or selectivity of agonist signaling, we have prepared C6 cells stably expressing the mu-opioid receptor and either pertussis toxin-insensitive or RGS- and pertussis toxin-insensitive Galpha(o). We have compared the activation of G protein, inhibition of adenylyl cyclase, stimulation of intracellular calcium release, and activation of the ERK1/2 MAPK pathway between cells expressing mutant Galpha(o) that is either RGS-insensitive or RGS-sensitive. The mu-receptor agonist [d-Ala(2),MePhe(4),Gly(5)-ol]enkephalin and partial agonist morphine were much more potent and/or had an increased maximal effect in inhibiting adenylyl cyclase and in activating MAPK in cells expressing RGS-insensitive Galpha(o). In contrast, mu-opioid agonist increases in intracellular calcium were less affected. The results are consistent with the hypothesis that the GTPase-activating protein activity of RGS proteins provides a control that limits agonist action through effector pathways and may contribute to selectivity of activation of intracellular signaling pathways.  相似文献   

10.
G蛋白信号调节因子的结构分类和功能   总被引:2,自引:0,他引:2  
Du YS  Huang BR 《生理科学进展》2005,36(3):215-219
G蛋白信号调节因子是能够直接与激活的Gα亚基结合,显著刺激Gα亚基上的GTP酶活性,加速GTP水解,从而灭活或终止G蛋白信号的一组分子大小各异的多功能蛋白质家族。它们都共同拥有一个130个氨基酸的保守的RGS结构域,其功能是结合激活的Gα亚基,负调节G蛋白信号。许多RGS蛋白还拥有非RGS结构域,能够结合其它信号蛋白,从而整合和调节G蛋白信号之间以及G蛋白和其它信号系统之间的关系。  相似文献   

11.
The M(3) muscarinic acetylcholine receptor (mAChR) expressed in HEK-293 cells couples to G(q) and G(12) proteins and stimulates phospholipase C (PLC) and phospholipase D (PLD) in a pertussis toxin-insensitive manner. To determine the type of G protein mediating M(3) mAChR-PLD coupling in comparison to M(3) mAChR-PLC coupling, we expressed various Galpha proteins and regulators of the G protein signaling (RGS), which act as GTPase-activating proteins for G(q)- or G(12)-type G proteins. PLD stimulation by the M(3) mAChR was enhanced by the overexpression of Galpha(12) and Galpha(13), whereas the overexpression of Galpha(q) strongly increased PLC activity without affecting PLD activity. Expression of the RGS homology domain of Lsc, which acts specifically on Galpha(12) and Galpha(13), blunted the M(3) mAChR-induced PLD stimulation without affecting PLC stimulation. On the other hand, overexpression of RGS4, which acts on Galpha(q)- but not Galpha(12)-type G proteins, suppressed the M(3) mAChR-induced PLC stimulation without altering PLD stimulation. We conclude that the M(3) mAChR in HEK-293 cells apparently signals to PLD via G(12)- but not G(q)-type G proteins and that G protein subtype-selective RGS proteins can be used as powerful tools to dissect the pertussis toxin-resistant G proteins and their role in receptor-effector coupling.  相似文献   

12.
13.
G protein-coupled receptor kinases (GRKs) are well characterized regulators of G protein-coupled receptors, whereas regulators of G protein signaling (RGS) proteins directly control the activity of G protein alpha subunits. Interestingly, a recent report (Siderovski, D. P., Hessel, A., Chung, S., Mak, T. W., and Tyers, M. (1996) Curr. Biol. 6, 211-212) identified a region within the N terminus of GRKs that contained homology to RGS domains. Given that RGS domains demonstrate AlF(4)(-)-dependent binding to G protein alpha subunits, we tested the ability of G proteins from a crude bovine brain extract to bind to GRK affinity columns in the absence or presence of AlF(4)(-). This revealed the specific ability of bovine brain Galpha(q/11) to bind to both GRK2 and GRK3 in an AlF(4)(-)-dependent manner. In contrast, Galpha(s), Galpha(i), and Galpha(12/13) did not bind to GRK2 or GRK3 despite their presence in the extract. Additional studies revealed that bovine brain Galpha(q/11) could also bind to an N-terminal construct of GRK2, while no binding of Galpha(q/11), Galpha(s), Galpha(i), or Galpha(12/13) to comparable constructs of GRK5 or GRK6 was observed. Experiments using purified Galpha(q) revealed significant binding of both Galpha(q) GDP/AlF(4)(-) and Galpha(q)(GTPgammaS), but not Galpha(q)(GDP), to GRK2. Activation-dependent binding was also observed in both COS-1 and HEK293 cells as GRK2 significantly co-immunoprecipitated constitutively active Galpha(q)(R183C) but not wild type Galpha(q). In vitro analysis revealed that GRK2 possesses weak GAP activity toward Galpha(q) that is dependent on the presence of a G protein-coupled receptor. However, GRK2 effectively inhibited Galpha(q)-mediated activation of phospholipase C-beta both in vitro and in cells, possibly through sequestration of activated Galpha(q). These data suggest that a subfamily of the GRKs may be bifunctional regulators of G protein-coupled receptor signaling operating directly on both receptors and G proteins.  相似文献   

14.
Members of the newly discovered regulator of G protein signaling (RGS) families of proteins have a common RGS domain. This RGS domain is necessary for conferring upon RGS proteins the capacity to regulate negatively a variety of Galpha protein subunits. However, RGS proteins are more than simply negative regulators of signaling. RGS proteins can function as effector antagonists, and recent evidence suggests that RGS proteins can have positive effects on signaling as well. Many RGS proteins possess additional C- and N-terminal modular protein-binding domains and motifs. The presence of these additional modules within the RGS proteins provides for multiple novel regulatory interactions performed by these molecules. These regions are involved in conferring regulatory selectivity to specific Galpha-coupled signaling pathways, enhancing the efficacy of the RGS domain, and the translocation or targeting of RGS proteins to intracellular membranes. In other instances, these domains are involved in cross-talk between different Galpha-coupled signaling pathways and, in some cases, likely serve to integrate small GTPases with these G protein signaling pathways. This review discusses these C- and N-terminal domains and their roles in the biology of the brain-enriched RGS proteins. Methods that can be used to investigate the function of these domains are also discussed.  相似文献   

15.
Regulator of G protein signaling (RGS) proteins are GTPase-activating proteins that modulate neurotransmitter and G protein signaling. RGS7 and its binding partners Galpha and Gbeta5 are enriched in brain, but biochemical mechanisms governing RGS7/Galpha/Gbeta5 interactions and membrane association are poorly defined. We report that RGS7 exists as one cytosolic and three biochemically distinct membrane-bound fractions (salt-extractable, detergent-extractable, and detergent-insensitive) in brain. To define factors that determine RGS7 membrane attachment, we examined the biochemical properties of recombinant RGS7 and Gbeta5 synthesized in Spodoptera frugiperda insect cells. We have found that membrane-bound but not cytosolic RGS7 is covalently modified by the fatty acid palmitate. Gbeta5 is not palmitoylated. Both unmodified (cytosolic) and palmitoylated (membrane-derived) forms of RGS7, when complexed with Gbeta5, are equally effective stimulators of Galpha(o) GTPase activity, suggesting that palmitoylation does not prevent RGS7/Galpha(o) interactions. The isolated core RGS domain of RGS7 selectively binds activated Galpha(i/o) in brain extracts and is an effective stimulator of both Galpha(o) and Galpha(i1) GTPase activities in vitro. In contrast, the RGS7/Gbeta5 complex selectively interacts with Galpha(o) only, suggesting that features outside the RGS domain and/or Gbeta5 association dictate RGS7-Galpha interactions. These findings define previously unrecognized biochemical properties of RGS7, including the first demonstration that RGS7 is palmitoylated.  相似文献   

16.
Regulation of G protein-mediated signal transduction by RGS proteins   总被引:2,自引:0,他引:2  
Kozasa T 《Life sciences》2001,68(19-20):2309-2317
RGS proteins form a new family of regulatory proteins of G protein signaling. They contain homologous core domains (RGS domains) of about 120 amino acids. RGS domains interact with activated Galpha subunits. Several RGS proteins have been shown biochemically to act as GTPase activating proteins (GAPs) for their interacting Galpha subunits. Other than RGS domains, RGS proteins differ significantly in size, amino acid sequences, and tissue distribution. In addition, many RGS proteins have other protein-protein interaction motifs involved in cell signaling. We have shown that p115RhoGEF, a newly identified GEF(guanine nucleotide exchange factor) for RhoGTPase, has a RGS domain at its N-terminal region and this domain acts as a specific GAP for Galpha12 and Galpha13. Furthermore, binding of activated Galpha13 to this RGS domain stimulated GEF activity of p115RhoGEF. Activated Galpha12 inhibited Galpha13-stimulated GEF activity. Thus p115RhoGEF is a direct link between heterotrimeric G protein and RhoGTPase and it functions as an effector for Galpha12 and Galpha13 in addition to acting as their GAP. We also found that RGS domain at N-terminal regions of G protein receptor kinase 2 (GRK2) specifically interacts with Galphaq/11 and inhibits Galphaq-mediated activation of PLC-beta, apparently through sequestration of activated Galphaq. However, unlike other RGS proteins, this RGS domain did not show significant GAP activity to Galphaq. These results indicate that RGS proteins have far more diverse functions than acting simply as GAPs and the characterization of function of each RGS protein is crucial to understand the G protein signaling network in cells.  相似文献   

17.
RGS proteins serve as GTPase-activating proteins and/or effector antagonists to modulate Galpha signaling events. In live cells, members of the B/R4 subfamily of RGS proteins selectively modulate G protein signaling depending on the associated receptor (GPCR). Here we examine whether GPCRs selectively recruit RGS proteins to modulate linked G protein signaling. We report the novel finding that RGS2 binds directly to the third intracellular (i3) loop of the G(q/11)-coupled M1 muscarinic cholinergic receptor (M1 mAChR; M1i3). This interaction is selective because closely related RGS16 does not bind M1i3, and neither RGS2 nor RGS16 binds to the G(i/o)-coupled M2i3 loop. When expressed in cells, RGS2 and M1 mAChR co-localize to the plasma membrane whereas RGS16 does not. The N-terminal region of RGS2 is both necessary and sufficient for binding to M1i3, and RGS2 forms a stable heterotrimeric complex with both activated G(q)alpha and M1i3. RGS2 potently inhibits M1 mAChR-mediated phosphoinositide hydrolysis in cell membranes by acting as an effector antagonist. Deletion of the N terminus abolishes this effector antagonist activity of RGS2 but not its GTPase-activating protein activity toward G(11)alpha in membranes. These findings predict a model where the i3 loops of GPCRs selectively recruit specific RGS protein(s) via their N termini to regulate the linked G protein. Consistent with this model, we find that the i3 loops of the mAChR subtypes (M1-M5) exhibit differential profiles for binding distinct B/R4 RGS family members, indicating that this novel mechanism for GPCR modulation of RGS signaling may generally extend to other receptors and RGS proteins.  相似文献   

18.
The heterotrimeric G proteins, G(12) and G(13), mediate signaling between G protein-coupled receptors and the monomeric GTPase, RhoA. One pathway for this modulation is direct stimulation by Galpha(13) of p115 RhoGEF, an exchange factor for RhoA. The GTPase activity of both Galpha(12) and Galpha(13) is increased by the N terminus of p115 Rho guanine nucleotide exchange factor (GEF). This region has weak homology to the RGS box sequence of the classic regulators of G protein signaling (RGS), which act as GTPase-activating proteins (GAP) for G(i) and G(q). Here, the RGS region of p115 RhoGEF is shown to be distinctly different in that sequences flanking the predicted "RGS box" region are required for both stable expression and GAP activity. Deletions in the N terminus of the protein eliminate GAP activity but retain substantial binding to Galpha(13) and activation of RhoA exchange activity by Galpha(13). In contrast, GTRAP48, a homolog of p115 RhoGEF, bound to Galpha(13) but was not stimulated by the alpha subunit and had very poor GAP activity. Besides binding to the N-terminal RGS region, Galpha(13) also bound to a truncated protein consisting only of the Dbl homology (DH) and pleckstrin homology (PH) domains. However, Galpha(13) did not stimulate the exchange activity of this truncated protein. A chimeric protein, which contained the RGS region of GTRAP48 in place of the endogenous N terminus of p115 RhoGEF, was activated by Galpha(13). These results suggest a mechanism for activation of the nucleotide exchange activity of p115 RhoGEF that involves direct and coordinate interaction of Galpha(13) to both its RGS and DH domains.  相似文献   

19.
RGS proteins (regulators of G protein signaling) attenuate heterotrimeric G protein signaling by functioning as both GTPase-activating proteins (GAPs) and inhibitors of G protein/effector interaction. RGS2 has been shown to regulate Galpha(q)-mediated inositol lipid signaling. Although purified RGS2 blocks PLC-beta activation by the nonhydrolyzable GTP analog guanosine 5'-O-thiophosphate (GTPgammaS), its capacity to regulate inositol lipid signaling under conditions where GTPase-promoted hydrolysis of GTP is operative has not been fully explored. Utilizing the turkey erythrocyte membrane model of inositol lipid signaling, we investigated regulation by RGS2 of both GTP and GTPgammaS-stimulated Galpha(11) signaling. Different inhibitory potencies of RGS2 were observed under conditions assessing its activity as a GAP versus as an effector antagonist; i.e. RGS2 was a 10-20-fold more potent inhibitor of aluminum fluoride and GTP-stimulated PLC-betat activity than of GTPgammaS-promoted PLC-betat activity. We also examined whether RGS2 was regulated by downstream components of the inositol lipid signaling pathway. RGS2 was phosphorylated by PKC in vitro to a stoichiometry of approximately unity by both a mixture of PKC isozymes and individual calcium and phospholipid-dependent PKC isoforms. Moreover, RGS2 was phosphorylated in intact COS7 cells in response to PKC activation by 4beta-phorbol 12beta-myristate 13alpha-acetate and, to a lesser extent, by the P2Y(2) receptor agonist UTP. In vitro phosphorylation of RGS2 by PKC decreased its capacity to attenuate both GTP and GTPgammaS-stimulated PLC-betat activation, with the extent of attenuation correlating with the level of RGS2 phosphorylation. A phosphorylation-dependent inhibition of RGS2 GAP activity was also observed in proteoliposomes reconstituted with purified P2Y(1) receptor and Galpha(q)betagamma. These results identify for the first time a phosphorylation-induced change in the activity of an RGS protein and suggest a mechanism for potentiation of inositol lipid signaling by PKC.  相似文献   

20.
Many studies have suggested a role for the members of the G12 family of heterotrimeric G proteins (Galpha12 and Galpha13) in oncogenesis and tumor cell growth. However, few studies have examined G12 signaling in actual human cancers. In this study, we examined the role of G12 signaling in prostate cancer. We found that expression of the G12 proteins is significantly elevated in prostate cancer. Interestingly, expression of the activated forms of Galpha12 or Galpha13 in the PC3 and DU145 prostate cancer cell lines did not promote cancer cell growth. Instead, expression of the activated forms of Galpha12 or Galpha13 in these cell lines induced cell invasion through the activation of the RhoA family of G proteins. Furthermore, inhibition of G12 signaling by expression of the RGS domain of the p115-Rho-specific guanine nucleotide exchange factor (p115-RGS) in the PC3 and DU145 cell lines did not reduce cancer cell growth. However, inhibition of G12 signaling with p115-RGS in these cell lines blocked thrombin- and thromboxane A2-stimulated cell invasion. These observations identify the G12 family proteins as important regulators of prostate cancer invasion and suggest that these proteins may be targeted to limit invasion- and metastasis-induced prostate cancer patient mortality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号