首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Methicillin resistance (mec) is not transduced into Staphylococcus aureus 8325-4, but is transduced into this host after it has been lysogenized with phage phi11 and has acquired the penicillinase plasmid pI524 by a separate transduction (Cohen and Sweeney, 1970, 1973). Strain 8325-4 is competent for transformation of typical plasmid or chromosomal markers and for mec only if it is lysogenic for phi11 or a related prophage (Sj?str?m et al., 1974, 1975). A mutant strain of phi11 that was temperature sensitive (Ts) for vegetative multiplication did not mediate competence for transformation of its 8325-4 lysogen if the lysogen had been grown at a nonpermissive temperature (Sj?str?m and Philipson, 1974). We isolated four Ts mutants of phi11 that did not mediate transducibility of their 8325-4(pI524) lysogens for mec after growth at nonpermissive temperatures (40 to 42 degrees C). Transduction of typical plasmid or chromosomal markers was not affected. These phi11-Ts mutants mediated normal competence of their lysogens for transformation of a tetracycline resistance plasmid. Similarly, phi11-Ts mutants that rendered their lysogens temperature sensitive for transformation did not depress the frequency of transduction of mec. These two types of phi11-Ts mutants fell into two different genetic complementation groups that differed in the physiology of deoxyribonucleic acid synthesis and in the time of expression of the mutations during a single-burst growth cycle at a nonpermissive temperature. A virulent mutant of phi11, which plaqued with 100% efficiency on 8325(phi11), also failed to condition strain 8325-4 for transducibility of mec but retained the ability to confer competence for transformation of a tetracycline resistance plasmid. Different genetic loci and physiological functions are involved in phi11 mutations that affect transducibility of mec and those that affect competence for transformation of markers generally in S. aureus 8325-4.  相似文献   

2.
Competence for Transfection in Staphylococcus aureus   总被引:19,自引:14,他引:5  
Lysogenicity with phage P11 is a requirement for competence in the presence of calcium ions in Staphylococcus aureus 8325N. The wild-type strain 8325N, lysogenic for the phages P11, P12, and P13, is also competent, but strain 8325-4, a nonlysogenic derivative of strain 8325N, as well as strains 8325-4 (P12) and 8325-4 (P13) could not develop competence. Preincubation of strain 8325-4 with culture filtrates from a competent strain can induce competence, but rabbit anti-P11 serum can neutralize the competence factor. Superinfection of competent strain 8325-4 (P11) with phage P11 at high multiplicities increases the transfection frequency. Uptake of deoxyribonucleic acid by competent cells is dependent on calcium ion concentration, pH, and temperature. Inhibition of energy metabolism or protein synthesis before and during incubation with deoxyribonucleic acid affects the binding and uptake. The ability to develop competence during bacterial growth differs between the wild-type strain (8325N) and a nuclease-deficient mutant (8325N nuc). The wild-type strain has a narrow competence maximum in the early exponential growth phase where no extracellular nuclease activity is produced. The nuc strain shows in addition competence maxima later in the exponential growth phase.  相似文献   

3.
When used in a helper phage capacity, phages 29, 52, 52A, 79, 80, 55, 71, 53, 83A, 85, 95, 96, phi11, and 80 alpha, all serological group B Staphylococcus phages, conferred competence for transformation to S. aureus 8325-4, a strain that does not normally become competent. Of the serological group A phages tested, only phage 3A showed significant competence-conferring activity. Phages 29, 55, 53, 83A, .85, 95, phi11, and 80 alpha showed an enhancement of competence-conferring activity if exposure to the cells occurred in the presence of nromal rabbit serum. All of the propagating strains for the Staphylococcus reference typing phages were rendered competent for transformation by exposure to at least one of these helper phages. The use of a helper phage to confer competence to S. aureus did not result in distortion of the genetic linkages observed in an inherently competent strain. Lysogenization by phages phi11 or 83A is shown not to be required for the expression of competence, and evidence is presented which indicates that competence in the inherently competent 8325 strain is due to a helper phage effect initiated by the adsorption to cells of phi11 virion parts [or phi11 particles in the case of the single lysogen 8325-4(phi11)] that have been liberated by prophage induction.  相似文献   

4.
Staphylococcus aureus cells of strain 8325 (N) are competent for phage deoxyribonucleic acid (DNA) when harvested in the early exponential growth phase. Phenotypic expression of the competence requires divalent cations, and calcium ions are most effective. Treatment of phage DNA with deoxyribonuclease completely destroys infectivity and heat-denaturated DNA is not infectious. The highest frequency of transfection is around 10(4) plaque-forming units per mug of DNA.  相似文献   

5.
Staphylococcus aureus NCTC 8325-4 and its eight variants lysogenized with phages responsible for the synthesis of staphylococcal staphylokinase were used for the study. Influence of phage conversion of S. aureus on its interaction with human leucocytes and influence of prophage on strain susceptibility to intracellular killing by human granulocytes without opsonins were evaluated. It was found that lysogenization of the strain with the bacteriophages decreased in each case reactivity of human leucocytes for staphylococcal strain what was expressed by lower bioluminescence values and by lower percentage of intracellular killing of bacterial cells carrying prophage.  相似文献   

6.
A thymine-requiring mutant of Staphylococcus aureus, strain 8325 (PI258)thy, undergoes prophage induction and lysis after thymine starvation. Four different phages were isolated from the lysate in low titers, among which was a phage designated phi 14, which differs from phage phi 11 in its immunity locus. The thymineless induced lysates of strain 8325(PI258)thy transduce the penicillinase plasmid at high frequency (10(-1), whereas transduction of chromosomal markers is inefficient. A plasmic-cured derivative of strain 8325(PI258)thy is also lysed by thymine starvation and be used for high-frequency transduction of other plasmids. Reconstitution of a strain of S. aureus that responds to thymine starvation was only partially successful, but this system can effectively be used to transduce plasmids or plasmid derivatives.  相似文献   

7.
Whole phages HP1 and HP3, vegetative-phage deoxyribonucleic acid (DNA), and single and tandem double prophage DNA were exposed to ultraviolet radiation and then assayed on a wild-type (DNA repair-proficient) Haemophilus influenzae Rd strain and on a repair-deficient uvr-1 strain. Host cell reactivation (DNA repair) was observed for whole-phage and vegetative-phage DNA but not for single and double prophage DNA. Competent (phage-resistant) Haemophilus parainfluenzae cells were normally transfected with H. influenzae-grown phage DNA and with tandem double prophage DNA but not at all with single prophage DNA. CaCl2-treated H. influenzae suspensions could be transfected with vegetative phage DNA and with double prophage DNA but not with single prophage DNA. These observations support the hypothesis that transfection with single prophage DNA occurs through prophage DNA single-strand insertion into the recipient chromosome (at the bacterial att site) followed by DNA replication and then prophage induction.  相似文献   

8.
A large pool of antibiotic resistant and auxotrophic mutants was isolated from the Staphylococcus aureus phage group 2 strains UT0002-19 and UT0017 by (1) antibiotic gradient plates, (2) trimethoprim selection, and (3) nitrosoguanidine mutagenesis, which sometimes was coupled by enrichment with either penicillin or methicillin. Strain UT0002-19 has a chromosomal determinant for exfoliative toxin (ET), which causes "scalded skin syndrome" in man. A few mutants were isolated from the phage group 1 strain UT0080, which also produces ET. Two transformation regimens, called the broth and plate methods, were devised for the phage group 2 strains. They employed 80 alpha as helper phage, and recipient cells were incubated with transforming DNA in the presence of Ca2+. Strain UT0080 was transformed using phage 55 as helper. Maximum competence of the phage group 2 strains occurred during early logarithmic growth in trypticase soy broth, but cells grown overnight on heart infusion agar were also competent. Transformation frequencies of all markers ranged from 10(-6) to 10(-8). For phage 80 alpha, a multiplicity of infection of 4 was optimal in transforming a mutant of strain UT0002-19. Transformation of gly, lin, met, ole, rif, and ser markers in S. aureus is reported for the first time. Ery and ole markers in all three strains exhibited cross-resistance. Mapping studies, similar to those performed by DNA-mediated transformation in the phage group 3 strain 8325, can now be commenced for phage group 2 strains of S. aureus in order to elucidate the molecular genetics of this medically important bacterium.  相似文献   

9.
Salmonella bacteriophage P22 grows in two deoxyribonucleic acid initiation mutants of Escherichia coli under nonpermissive conditions, dnaA and dnaC. Functional products of genes dnaE, dnaZ, lig, dnaK, and dnaG are indispensable for deoxyribonucleic acid replication of P22. In 11 E. coli dnaB mutants belonging to all phenotypic groups, phage were produced at 42 degrees C.  相似文献   

10.
Phage P22 can integrate as prophage into a recombination-deficient (Rec(-)) strain of Salmonella typhimurium. At 37 C, the integration efficiency is only 10% that in Rec(+) infection, but at 25 C the efficiencies in Rec(-) and Rec(+) hosts are similar. Rec(-) lysogens cannot be induced by ultraviolet irradiation or by treatments with the chemical inducing agents streptonigrin or mitomycin C. Heat induction of Rec(-) cells lysogenic for a temperature-sensitive c(2) mutant (ts c(2)) is normal, showing that the Rec(-) cell has the machinery necessary for prophage excision. Ultraviolet irradiation of Rec(-) (ts c(2)) lysogens prior to heat induction does not prevent the formation of infective centers after temperature shift. Thus, the noninducibility of Rec(-) lysogens is not due to destruction of the prophage as a result of ultraviolet irradiation. Deoxyribonucleic acid-ribonucleic acid (RNA) hybridization experiments demonstrate that no increase in phage-specific RNA synthesis occurs after ultraviolet irradiation of a Rec(-) (c(+)) lysogen. The Rec(-) mutant appears to lack part of the mechanism required to destroy the phage repressor and allow the initiation of early phage functions such as messenger RNA synthesis. A similar conclusion was reached previously for an Escherichia coli Rec(-) strain.  相似文献   

11.
12.
We investigated the capacity of Escherichia coli mutants defective in the single-strand deoxyribonucleic acid (DNA)-binding protein to amplify the synthesis of the recA protein, induce prophage lambda, and degrade their DNA after treatment with ultraviolet radiation, mitomycin C, or bleomycin. The thermosensitive ssbA1 strain induced recA protein and lambda phage normally at 30 degrees C, but no induction was observed at 42 degrees C when ultraviolet radiation or mitomycin C was used. The lexC113 mutant did not amplify recA protein synthesis or induce phage lambda at either 30 or 42 degrees C with those agents. Bleomycin was able to elicit induction of recA and phage lambda in both mutants at any temperature. After induction with ultraviolet radiation at the elevated temperature, no DNA degradation was observed for 40 min, but at later times there was increased degradation in the lexC113 strain, compared with the wild type, and even greater degradation in the ssbA1 mutant. We discuss the role of single-strand DNA-binding protein in induction and the possibility that the lexC product may exert its influence on recA and lambda induction at the level of the single-strand DNA gap.  相似文献   

13.
By using temperature-sensitive (ts) and suppressor-sensitive (sus) mutants, 11 essential genes have been identified in phage phi105. The order of the genes has been established in two- and three-factor crosses. The genes can be arranged in a linear order; this order is identical in the vegetative phage and in the prophage. One gene essential for phage deoxyribonucleic acid (DNA) synthesis has been found. Marker rescue from prophage and mature DNA, taken up by competent bacteria, was studied by superinfection with phage carrying one sus and one ts mutation. In prophage DNA, all single markers studied are rescued at similar frequencies. The frequency of co-rescue of two markers is proportional to the recombinational distance between the markers. Thus, colinearity between the genetic map and the position on the DNA molecule of those mutations used to establish the map is demonstrated. The results indicate that the recombination frequencies observed in vegetative crosses are a relative measure of the physical distance between markers. All single markers are not rescued at equal frequencies from mature DNA. The frequency of co-rescue of two markers is related to the recombinational distance only over a distance about one-fourth or less of the genetic map. Markers separated by 10% recombination, or more, are co-rescued at 5 to 10% of the frequency of rescue of single markers. Shearing of mature DNA into half-sized molecules reduces the efficiency by which single markers are rescued by a factor of 5 to 10. The results of experiments on co-rescue of two markers from half-sized mature DNA indicate a preferred break-point near the middle of the genetic map; the results are compatible with a nonpermuted sequence in mature DNA. It is pointed out and discussed that mature DNA exhibits several anomalies in marker rescue experiments.  相似文献   

14.
Eight temperature-sensitive (ts) mutants that replicate normally at 32 C but poorly, if at all, at 39.5 C have been isolated from mutagenized stocks of a wild-type strain of type 5 adenovirus. Three mutagens were employed: nitrous acid, hydroxylamine, and nitrosoguanidine. Ts mutants were isolated from mutagenized viral stocks with frequencies between 0.01 and 0.1%. All eight mutants had reversion frequencies of 10(-5) or less. Complementation experiments in doubly infected cultures at the nonpermissive temperature separated the mutants into three nonoverlapping complementation groups. Complementation yields ranged from a 2.3- to a 3,000-fold increase over the sums of the yields from the two singly infected controls. Genetic recombination was also demonstrated; approximate recombination frequencies ranged from 0.1 to 15%. Preliminary biochemical and immunological characterization of the mutants indicated that: (i) the single mutant in complementation group I did not replicate its deoxyribonucleic acid (DNA) or synthesize late proteins at the nonpermissive temperature but did inhibit host DNA synthesis to 25% of an uninfected control; (ii) the four group II mutants replicated viral DNA, shut off host DNA synthesis, synthesized penton base and fiber, but did not synthesize immunologically detectable hexon; the three mutants in complementation group III synthesized viral DNA, shut off host DNA synthesis, and made immunologically reactive capsid proteins (hexon, penton base, and fiber).  相似文献   

15.
Ultraviolet irradiation of Escherichia coli polA(-) cells reduces their capacity to support the growth of T4 phage. There is no additional loss of capacity observed in pol tsA(-)recA(-) double mutants at the nonpermissive temperature. The reversion frequency of a T4 rII mutant after ultraviolet irradiation is not changed by the absence of host deoxyribonucleic acid polymerase I.  相似文献   

16.
The addition of 25 mug of protamine sulfate per ml to lysozyme-ethylenediamine-tetraacetic acid spheroplasts of Escherichia coli stimulates transfection not only for T1 phage deoxyribonucleic acid (DNA; Hotz and Mauser, 1969) but also for the following phage DNA species: lambda, 10,000-fold to an efficiency of 10(-3) infective centers per DNA molecule; phiX174 replicative form, 300-fold to an efficiency of 5 x 10(-2); fd replicative form, 300-fold to 10(-6); T7, 300-fold to 3 x 10(-7). Three native phage DNA species were not infective at all in the absence of protamine sulfate but were infective in the presence of protamine sulfate with the following efficiencies: T4, 10(-5); T5, 3 x 10(-6); and P22, 3 x 10(-9). The effect of protamine sulfate is specific for double-stranded DNA. The application of infectivity assays to the study of phage DNA replication, recombination, prophage integration, prophage excision, and interspecies transfection are discussed.  相似文献   

17.
The physiological effects of incubation at nonpermissive temperatures of Escherichia coli mutants that carry a temperature-sensitive dnaZ allele [dnaZ(Ts)2016] were examined. The temperature at which the dnaZ(Ts) protein becomes inactivated in vivo was investigated by measurements of deoxyribonucleic acid (DNA) synthesis at temperatures intermediate between permissive and nonpermissive. DNA synthesis inhibition was reversible by reducing the temperature of cultures from 42 to 30 degrees C; DNA synthesis resumed immediately after temperature reduction and occurred even in the presence of chloramphenicol. Inasmuch as DNA synthesis could be resumed in the absence of protein synthesis, we concluded that the protein product of the dnaZ allele (Ts)2016 is renaturable. Cell division, also inhibited by 42 degrees C incubation, resumed after temperature reduction, but the length of time required for resumption depended on the duration of the period at 42 degrees C. Replicative synthesis of cellular DNA, examined in vitro in toluene-permeabilized cells, was temperature sensitive. Excision repair of ultraviolet light-induced DNA lesions was partially inhibited in dnaZ(Ts) cells at 42 degrees C. The dnaZ(+) product participated in the synthesis of both Okazaki piece (8-12S) and high-molecular-weight DNA. During incubation of dnaZ(Ts)(lambda) lysogens at 42 degrees C, prophage induction occurred, and progeny phage were produced during subsequent incubation at 30 degrees C. The temperature sensitivity of both DNA synthesis and cell division in the dnaZ(Ts)2016 mutant was suppressed by high concentrations of sucrose, lactose, or NaCl. Incubation at 42 degrees C was neither mutagenic nor antimutagenic for the dnaZ(Ts) mutant.  相似文献   

18.
Mutants of the mini-F plasmid pML31 thermosensitive in replication.   总被引:1,自引:0,他引:1       下载免费PDF全文
Hydroxylamine mutagenesis was used for the induction of thermosensitive replication mutants of the mini-F plasmid pML31. Replication mutants were characterized by studying the segregation kinetics and the incorporation of [3H]-thymidine into plasmid deoxyribonucleic acid at the nonpermissive temperature. Based on these experiments two types of mutants could be distinguished. Mutants of type I are fast segregating with the kinetics expected if plasmid replication was blocked immediately. Double-label experiments showed a rapid shut-off of replication in these mutants at 42 degrees C. Mutants of type II segregate slower, showing only a partial inhibition of plasmid deoxyribonucleic acid synthesis at the nonpermissive temperature. The label incorporated at 42 degrees C was predominantly found in open circular plasmid molecules.  相似文献   

19.
Two temperature-sensitive mutants of satellite phage P4 which do not synthesize P4 DNA at the nonpermissive temperature have been isolated. One of these phage is mutated in the P4 alpha gene. It complements a P4 delta mutant, but not a P4 alpha amber mutant; both mutants are phenotypically identical to alpha amber mutants in all properties studied. They synthesize P4 early proteins 1 and 2 as well as two additional P4-induced early proteins, 5 and 6, which are described here. P4 late proteins are not synthesized by these mutants and cannot be transactivated by helper phage P2. The mutants are unable to transactivate P2 late proteins from a P2 AB mutant. The P4 RNA polymerase activity which has been suggested to be involved in P4 DNA synthesis is not detected at the nonpermissive temperature. The P4 polymerase activity in partially purified extracts prepared from cells infected with the mutant at the permissive temperature is temperature sensitive. Reduced activity is found in vitro when these extracts are preincubated at 41 degrees C or assayed at temperatures higher than 37 degrees C. Thus, the P4 RNA polymerase is the product of the alpha gene. Temperature shift experiments show that the alpha gene product is required until late in the P4 cycle.  相似文献   

20.
Staphylococcus aureus is a successful pathogen in part because the bacterium can adapt rapidly to selective pressures imparted by the external environment. Horizontal gene transfer (HGT) plays an integral role in the evolution of bacterial genomes, and phage transduction is likely to be the most common and important HGT mechanism for S. aureus. Phage can transfer not only its own genome DNA but also host bacterial DNA with or without pathogenicity islands to other bacteria. Here, we demonstrate that the staphylococcal prophage ?NM2 could transfer between strains Newman and NCTC8325/NCTC8325-4 by simulating a natural situation in laboratory without mitomycin C or ultra-violet light treatment. This transference may be caused by direct contact between Newman and NCTC8325/NCTC8325-4 instead of phage particles released in Newman culture’s supernatant. The rates of successful horizontal genetic transfer in recipients NCTC8325 and NCTC8325-4 were 2.1% and 1.8%, respectively. Prophage ?NM2 was integrated with one direction at an intergenic region between rpmF and isdB in all 17 lysogenic isolates. Phage particles were spontaneously released from lysogenic strains again and had no noticeable influence on the growth of host cells. The results reported herein provide insight into how mobile genetic elements such as prophages can lead to the emergence of genetic diversity among S. aureus strains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号