首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The wild mouse ecotropic retrovirus CasBrE causes a spongiform neurodegenerative disease after neonatal inoculation, with an incubation period ranging from 2 to 12 months. We previously showed that introduction of long terminal repeat (LTR) and gag-pol sequences from a strain of Friend murine leukemia virus (FB29) resulted in a dramatic acceleration of the onset of the disease. The chimeric virus FrCasE, which consisted of the FB29 genome containing 3' pol and env sequences from the wild mouse virus, induced a highly predictable, lethal neurodegenerative disease with an incubation period of only 16 days. Here we report that the sequences which are primary determinants of the length of the incubation period are located in the 5' end of the viral genome between a KpnI site in the R region of the LTR and a PstI site immediately 5' of the start codon for pr65gag (R-U5-5' leader). This region contains the tRNA primer binding site, splice donor site for the subgenomic env mRNA, and the packaging sequence. Computer-assisted sequence analysis failed to find evidence of a consensus sequence for a DNA enhancer in this region. In addition, sequences within a region of the genome between a ClaI site at the 3' end of env to the KpnI site in the R region of the LTR (inclusive of U3) also influenced the incubation period of the disease, but the effect was distinctly weaker than that of the R-U5-5' leader sequence. This U3 effect, however, appeared to be independent of the number of direct repeats, since deletion of one of two duplicated 42-base repeats containing consensus sequences of nuclear-factor binding domains had no effect on the incubation period of the disease. On the basis of Southern blot analysis of total viral DNA in the tissues, the effect of these sequences on the incubation period appeared to be related to the level of virus replication in the central nervous system. All of the chimeric viruses analyzed, irrespective of neurovirulence, replicated to comparable levels in the spleen and induced comparable levels of viremia.  相似文献   

2.
A variety of ecotropic murine leukemia viruses cause neurodegenerative disease. We describe here the clinical and histopathological features of a neurologic disease induced by a polytropic murine leukemia virus, FMCF98. Clinical disease was dominated by hyperexcitability and ataxia, and the histopathology was characterized primarily by astrocytosis and astrocytic degeneration. The viral envelope gene harbored the determinants of neurovirulence, since the chimeric virus Fr98E, which contained the envelope gene of FMCF98 on a background of the nonneurovirulent virus FB29, caused a similar disease. The disease caused by Fr98E differed from that induced by the coisogenic neurovirulent ecotropic virus FrCasE in clinical presentation, histopathology, and distribution of virus in the central nervous system. Since Fr98E contains a polytropic envelope gene and FrCasE contains an ecotropic envelope gene, these phenotypic differences appeared to be determined by envelope sequences and may reflect differences in virus receptor usage in the central nervous system.  相似文献   

3.
M Czub  F J McAtee    J L Portis 《Journal of virology》1992,66(6):3298-3305
A molecular clone of wild mouse ecotropic retrovirus CasBrE (clone 15-1) causes a spongiform neurodegenerative disease with a long incubation period, greater than or equal to 6 months. This virus infects the central nervous system (CNS) at low levels. In contrast, a chimeric virus, FrCasE, containing env and 3' pol sequences of 15-1 in a Friend murine leukemia virus background, infects the CNS at high levels and causes a rapid neurodegenerative disease with an incubation period of only 16 days. With both viruses, the induction of neurologic disease is dependent on inoculation during the perinatal period. Since the length of the incubation period of this disease appears to be a function of the relative level of CNS infection, we have attempted to identify the viral and host factors which determine the relative level of virus infection of the CNS. It was previously shown that the CNS is susceptible to infection only during the perinatal period (M. Czub, S. Czub, F. J. McAtee, and J. L. Portis, J. Virol. 65:2539-2544, 1991). Here we have found that the susceptibility of the CNS wanes progressively or gradually as a function of the age of the host, this age-dependent resistance being complete by 12 to 14 days of age. Utilizing a group of chimeric viruses, we found that the relative level of CNS infection achieved after inoculation of mice at 1 day of age was a function of the kinetics of virus replication and spread in peripheral organs. Viruses which reached peak viremia titers early (5 to 7 days of age) infected the CNS at high levels, and viruses which reached peak titers later infected the CNS at lower levels. Among the group of viruses examined in the current study, the kinetics of peripheral virus replication and spread appeared to be influenced primarily by sequences within the R-U5-5' leader region of the viral genome. These results suggested that the relative level of CNS infection was determined very early in life and appeared to be a function of a dynamic balance between the kinetics of virus replication in the periphery and a progressively developing restriction of virus replication in the CNS.  相似文献   

4.
CasBrE is a neurovirulent murine retrovirus which induces a spongiform myeloencephalopathy in susceptible mice. Genetic mapping studies have indicated that sequences responsible for neurovirulence reside within the env gene. To address the question of direct envelope protein neuroxicity in the central nervous system (CNS), we have generated chimeric mice expressing the CasBrE envelope protein in cells of neuroectodermal origin. Specifically, the multipotent neural progenitor cell line C17.2 was engineered to express the CasBrE env gene as either gp70/p15E (CasE) or gp70 alone (CasES). CasE expression in these cells resulted in complete (>10(5)) interference of superinfection with Friend murine leukemia virus clone FB29, whereas CasES expression resulted in a 1.8-log-unit decrease in FB29 titer. Introduction of these envelope-expressing C17.2 cells into the brains of highly susceptible IRW mice resulted in significant engraftment as integral cytoarchitecturally correct components of the CNS. Despite high-level envelope protein expression from the engrafted cells, no evidence of spongiform neurodegeneration was observed. To examine whether early virus replication events were necessary for pathogenesis, C17.2 cells expressing whole virus were transplanted into mice in which virus replication in the host was specifically restricted by Fv-1 to preintegration events. Again, significant C17.2 cell engraftment and infectious virus expression failed to precipitate spongiform lesions. In contrast, transplantation of virus-expressing C17.2 progenitor cells in the absence of the Fv-1 restriction resulted in extensive spongiform neurodegeneration by 2 weeks postengraftment. Cytological examination indicated that infection had spread beyond the engrafted cells, and in particular to host microglia. Spongiform neuropathology in these animals was directly correlated with CasBrE env expression in microglia rather than expression from neural progenitor cells. These results suggest that the envelope protein of CasBrE is not itself neurotoxic but that virus infectious events beyond binding and fusion in microglia are necessary for the induction of CNS disease.  相似文献   

5.
In this report, we have examined the role of central nervous system (CNS) development in the pathogenesis of neurodegenerative disease induced by murine retroviruses. This was accomplished by comparing the effect of delivering viruses, with either severe or marginal neurovirulence (J. L. Portis, S. Czub, C. F. Garon, and F. J. McAtee, J. Virol. 64:1648-1656, 1990), during the midgestational development of the mouse (gestation days 9 to 10). Midgestation inoculation of the marginally neurovirulent virus, 15-1, resulted in high level CNS infection, as determined by viral DNA and protein analysis. The high-level infection resulted in rapid, severe disease with 100% incidence and an average clinical onset on postnatal day 17 (P17). The disease onset was comparable to that observed for the highly neurovirulent virus, FrCasE, when inoculated neonatally (onset ca. P16). To evaluate whether disease could be induced even earlier in CNS development, FrCasE was inoculated during midgestation. Surprisingly, neither clinical nor histological manifestations of CNS disease were accelerated but rather appeared at the same developmental time as seen for neonatally inoculated animals (onset of neuropathology at ca. P10; onset of clinical disease at ca. P15). CNS infection, on the other hand, occurred at earlier times (< P0), at higher levels, and with a broader distribution than in neonatally inoculated animals. No infection of the neurons which ultimately degenerate was observed in any regimen of virus inoculation. It was observed, however, that the gp70 viral envelope protein from the CNS showed an increase mobility on sodium dodecyl sulfate-polyacrylamide gel electrophoresis compared with the envelope protein from infected spleens or purified virions. These results indicate that a postnatal developmental event must occur to allow the presence of a neurovirulent virus to precipitate spongiform degeneration and that an altered envelope protein may be participating in the process.  相似文献   

6.
Neonatal inoculation of the wild-mouse ecotropic retrovirus CasBrE (clone 15-1) causes a noninflammatory spongiform neurodegenerative disease with an incubation period of > or = 6 months. Introduction of sequences from Friend murine leukemia virus (clone FB29) into the genome of CasBrE results in a marked shortening of the incubation period. The FB29 sequences which influence the incubation period were previously localized to the 5' leader sequence of the viral genome (M. Czub, F. J. McAtee, and J. L. Portis, J. Virol. 66:3298-3305, 1992). In the current study, we constructed a series of chimeric viruses consisting of the genome of CasBrE containing various segments of the leader sequence from FB29. A 41-nucleotide element (positions 481 through 521) near the 3' end of the leader was found to have a strong influence on the incubation period. This element influenced the kinetics of virus replication and/or spread in nonneuronal tissues, a property which was shown previously to determine the extent of central nervous system infection (M. Czub, F. J. McAtee, and J. L. Portis, J. Virol. 66:3298-3305, 1992). Curiously, this sequence had no demonstrable effect on virus replication in vitro in a fibroblastic cell line from Mus dunni. This segment encodes 14 of the unique 88-amino-acid N terminus of pr75gag, the precursor of a glycosylated form of the gag polyprotein which is expressed at the cell surface. Previous in vitro studies of mutants of Moloney murine leukemia virus lacking expression of glycosylated Gag failed to reveal a function for this protein in virus replication. We mutated the Kozak consensus sequence around the initiation codon for this protein in the chimeric virus CasFrKP, a virus which induces neurologic disease with a short (18- to 23-day) incubation period. M. dunni cells infected with the mutants lacked detectable cell surface Gag, but, compared with CasFrKP, no effect on replication kinetics in vitro was observed. In contrast, there was a marked slowing of the replication kinetics in vivo and a dramatic attenuation of neurovirulence. These studies indicate that glycosylated Gag has an important function in virus replication and/or spread in the mouse and further suggest that the sequence of its N terminus is a critical, though likely indirect, determinant of neurovirulence.  相似文献   

7.
L Zhang  A Senkowski  B Shim    R P Roos 《Journal of virology》1993,67(7):4404-4408
Strain GDVII and other members of the GDVII subgroup of Theiler's murine encephalomyelitis virus are highly neurovirulent and rapidly fatal, while strain DA and other members of the TO subgroup produce a chronic, demyelinating disease. GDVII/DA chimeric cDNA studies suggest that a major neurovirulence determinant is within the GDVII 1B through 1D capsid protein coding region, although the additional presence of upstream GDVII sequences, including the 5' untranslated region, contributes to full neurovirulence. Our studies indicate that there are limitations in precisely delineating neurovirulence determinants with chimeric cDNAs between evolutionarily diverged viruses, such as GDVII and DA.  相似文献   

8.
A biologically active molecular clone of BALB/Moloney mink cell focus-forming (Mo-MCF) proviral DNA has been reconstructed in vitro. It contains the 5' half of BALB/Moloney murine leukemia virus (Mo-MuLV) DNA and the 3' half of BALB/Mo-MCF DNA. The complete nucleotide sequence of the env gene and the 3' long terminal repeat (LTR) of the cloned Mo-MCF DNA has been determined and compared with the sequence of the corresponding region of parental Mo-MuLV DNA. The substitution in the Mo-MCF DNA encompasses 1,159 base pairs, beginning in the carboxyl terminus of the pol gene and extending to the middle of the env gene. The Mo-MCF env gene product is predicted to be 29 amino acids shorter than the parental Mo-MuLV env gene product. The portion of the env gene encoding the p15E peptide is identical in both viral DNAs. There is an additional A residue in the Mo-MCF viral DNA in a region just preceding the 3' LTR. The nucleotide sequence of the 3' LTR of Mo-MCF DNA is similar to that of the 5' LTR of BALB/Mo-MuLV DNA with the exception of two single base substitutions. We conclude that the sequence substitution in the env gene is responsible for the dual-tropic properties of Mo-MCF viruses.  相似文献   

9.
10.
Friend murine leukemia virus (F-MuLV) is a highly leukemogenic replication-competent murine retrovirus. Both the F-MuLV envelope gene and the long terminal repeat (LTR) contribute to its pathogenic phenotype (A. Oliff, K. Signorelli, and L. Collins, J. Virol. 51:788-794, 1984). To determine whether the F-MuLV gag and pol genes also possess sequences that affect leukemogenicity, we generated recombinant viruses between the F-MuLV gag and pol genes and two other murine retroviruses, amphotrophic clone 4070 (Ampho) and Friend mink cell focus-inducing virus (Fr-MCF). The F-MuLV gag and pol genes were molecularly cloned on a 5.8-kilobase-pair DNA fragment. This 5.8-kilobase-pair F-MuLV DNA was joined to the Ampho envelope gene and LTR creating a hybrid viral DNA, F/A E+L. A second hybrid viral DNA, F/Fr ENV, was made by joining the 5.8-kilobase-pair F-MuLV DNA to the Fr-MCF envelope gene plus the F-MuLV LTR. F/A E+L and F/Fr ENV DNAs generated recombinant viruses upon transfection into NIH 3T3 cells. F/A E+L virus (F-MuLV gag and pol, Ampho env and LTR) induced leukemia in 20% of NIH Swiss mice after 6 months. Ampho-infected mice did not develop leukemia. F/Fr ENV virus (F-MuLV gag and pol, Fr-MCV env, F-MuLV LTR) induced leukemia in 46% of mice after 3 months. Recombinant viruses containing the Ampho gag and pol, Fr-MCF env, and F-MuLV LTR caused leukemia in 38% of mice after 6 months. We conclude that the F-MuLV gag and pol genes contain sequences that contribute to the pathogenicity of murine retroviruses. These sequences can convert a nonpathogenic virus into a leukemia-causing virus or increase the pathogenicity of viruses that are already leukemogenic.  相似文献   

11.
M Czub  S Czub  F J McAtee    J L Portis 《Journal of virology》1991,65(5):2539-2544
The murine retrovirus CasBrE causes a noninflammatory spongiform degeneration of the central nervous system (CNS). Mice inoculated as neonates develop viremia and are susceptible to disease. However, mice inoculated at 10 days of age do not develop viremia and are totally resistant to the neurologic disease. We recently described a highly neurovirulent chimeric virus, FrCasE (J. L. Portis, S. Czub, C. F. Garon, and F. J. McAtee, J. Virol. 64:1648-1656, 1990), which contains the env gene of CasBrE. Mice inoculated at 10 days of age with this virus developed a viremia comparable to that in neonatally inoculated mice but, surprisingly, were still completely resistant to the neurodegenerative disease. A comparison of the tissue distribution of virus replication for mice inoculated at 1 or 10 days of age was determined by Southern blot analysis for the quantification of viral DNA and by infectious-center assay for the quantification of virus-producing cells. The levels of virus replication in the spleens were comparable in the two groups. In contrast, virus replication in the CNS of the resistant 10-day-old mice was markedly restricted (100- to 1,000-fold). Intracerebral inoculation did not overcome this restriction. A similar pattern of CNS-specific restriction of virus replication and resistance to disease was observed in athymic NIH Swiss nude mice inoculated at 10 days of age, suggesting that T-cell immunity was not involved. From our results, we conclude that the age-dependent resistance to disease is a consequence of the restriction of virus replication within the CNS due to the developmental state of the organ.  相似文献   

12.
The chimeric murine oncornavirus FrCas(E) causes a rapidly progressive noninflammatory spongiform encephalomyelopathy after neonatal inoculation. The virus was constructed by the introduction of pol-env sequences from the wild mouse virus CasBrE into the genome of a neuroinvasive but nonneurovirulent strain of Friend murine leukemia virus (FMuLV), FB29. Although the brain infection by FrCas(E) as well as that by other neurovirulent murine retroviruses has been described in detail, little attention has been paid to the neuroinvasive but nonneurovirulent viruses. The purpose of the present study was to compare brain infection by FrCas(E) with that by FB29 and another nonneurovirulent virus, F43, which contains pol-env sequences from FMuLV 57. Both FB29 and F43 infected the same spectrum of cell types in the brain as that infected by FrCas(E), including endothelial cells, microglia, and populations of neurons which divide postnatally. Viral burdens achieved by the two nonneurovirulent viruses in the brain were actually higher than that of FrCas(E). The widespread infection of microglia by the two nonneurovirulent viruses is notable because it is infection of these cells by FrCas(E) which is thought to be a critical determinant of its neuropathogenicity. These results indicate that although the sequence of the envelope gene determines neurovirulence, this effect appears to operate through a mechanism which does not influence either viral tropism or viral burden in the brain. Although all three viruses exhibited similar tropism for granule neurons in the cerebellar cortex, there was a striking difference in the distribution of envelope proteins in those cells in vivo. The FrCas(E) envelope protein accumulated in terminal axons, whereas those of FB29 and F43 remained predominantly in the cell bodies. These observations suggest that differences in the intracellular sorting of these proteins may exist and that these differences appear to correlate with neurovirulence.  相似文献   

13.
Polymerase chain reaction (PCR) has been used to amplify the large fragments from viral genomic DNA of SIV from wild caught, asymptomatic Erythrocebus monkeys from Western Africa (Senegal) and also from HIV-2 infected cell lines. By using consensus primer sequences from highly conserved stretches of gag, pol and env genes, two halves of the viral genome of HIV-2 and SIV (isolated from west African Erythrocebus monkeys) have amplified by PCR. One half spans 5200 bp from within the U3 region of the 5' long terminal repeat (LTR) into pol gene and an overlapping fragment spans 3700 bp from the pol gene into U5 region of 3' LTR. Also fragments ranging from 1-2.3 kb from gag pol and env genes have been successfully amplified. Our data demonstrate that primers used to amplify large segments from viral DNA yield better results if they are derived from a consensus sequence of a highly conserved stretch of the viral genome.  相似文献   

14.
Nucleotide sequence of the 3' end of MCF 247 murine leukemia virus   总被引:32,自引:24,他引:8       下载免费PDF全文
We isolated DNA clones of MCF 247, a leukemogenic, recombinant type C virus obtained from the thymus of an AKR mouse. We determined the nucleotide sequence of the viral long terminal repeat (LTR) and the 3' end of env, and we compared the sequences to corresponding sequences of the genome of Akv virus, the putative ecotropic parent of MCF 247. By analogy with Moloney leukemia virus, we identified the amino terminus of Prp15E, the C-terminal proteolytic cleavage product of env and precursor to mature virion p15E. In MCF 247 the presumptive Prp15E is encoded by a 603-nucleotide open reading frame. The majority of this sequence is identical to that of Akv. However, a recombination event near the 3' end of the Prp15E-coding region introduces nonecotropic sequences into MCF 247, and these extend to the 3' end through the U3 portion of the LTR. The U3 regions of Akv and MCF 247 are about 83% homologous. The R and U5 regions of the LTR of MCF 247 and Akv are identical. Large RNase T1-resistant oligonucleotides analyzed previously in numerous ecotropic and MCF viral genomes were located within the Akv and MCF 247 DNA sequences. The resulting precise T1 oligonucleotide maps of the 3' ends of MCF viral genomes reveal that the biologically defined, leukemogenic class I MCFs isolated from thymic neoplasms of inbred mice all share the sequence pattern seen in MCF 247, a representative of this group; they possess recombinant Prp15E genes and derive U3 from their nonecotropic parents.  相似文献   

15.
We constructed five chimeric clones between human immunodeficiency virus type 1 (HIV-1) and simian immunodeficiency virus (SIVMAC) and four SIVMAC mutants by recombinant DNA techniques. Three chimeric clones and all mutants with an alteration in either the vif, vpx, vpr, or nef gene were infectious to human CD4-positive cell lines. The susceptibility of macaque monkey peripheral blood mononuclear cells (PBMC) to infection by these mutants and chimeras was examined in vitro. Macaque PBMC supported the replication of wild-type and vpx, vpr, and nef mutant SIVMAC strains. A chimera carrying the long terminal repeats (LTRs), gag, pol, vif, and vpx of SIVMAC and tat, rev, vpu, and env of HIV-1 was also replication competent in PBMC. In contrast, HIV-1, the vif mutant of SIVMAC, a chimera containing rev and env of SIVMAC, and a chimera containing vpx, vpr, tat, rev, and env of SIVMAC did not grow in PBMC. Western immunoblotting analysis of the replicating chimera in PBMC confirmed the hybrid nature of the virus. These data strongly suggested that the sequence important for macaque cell tropism lies within the LTR, gag, pol, and/or vif sequences of the SIVMAC genome.  相似文献   

16.
The major determinants involved in neurological disease induction by polytropic murine leukemia virus FMCF98 are encoded by the envelope gene. To map these determinants further, we produced four chimeras which contained neurovirulent FMCF98 envelope sequences combined with envelope sequences from the closely related nonneurovirulent polytropic virus FMCF54. Surprisingly, two chimeric viruses containing completely separate envelope regions from FMCF98 could both induce neurological disease. Clinical signs caused by both neurovirulent chimeras appeared to be indistinguishable from those caused by FMCF98, although the incubation periods were longer. One neurovirulence determinant mapped to the N-terminal portion of gp7O, which contains the VRA and VRB receptor-binding regions, while the other determinant mapped downstream of both of the variable regions. Western blot (immunoblot) analyses and immunohistochemical staining of tissue sections indicated that the variations in neurovirulence of these viruses could not be explained by differences in either the quantitative level or the location of virus expression in the brain.  相似文献   

17.
18.
To examine the relationship between macrophage tropism and neurovirulence, macaques were inoculated with two recombinant hybrid viruses derived from the parent viruses SIVmac239, a lymphocyte-tropic, non-neurovirulent clone, and SIV/17E-Br, a macrophage-tropic, neurovirulent virus strain. The first recombinant, SIV/17E-Cl, contained the portion of the env gene that encodes the surface glycoprotein and a short segment of the transmembrane glycoprotein of SIV/17E-Br in the backbone of SIVmac239. Unlike SIVmac239, SIV/17E-Cl replicated productively in macrophages, demonstrating that sequences in the surface portion of env determine macrophage tropism. None of five macaques inoculated with SIV/17E-Cl developed simian immunodeficiency virus (SIV) encephalitis. The second recombinant, SIV/17E-Fr, which contained the entire env and nef genes and the 3' long terminal repeat of SIV/17E-Br in the SIVmac239 backbone, was also macrophage tropic. Six of nine macaques inoculated with SIV/17E-Fr developed SIV encephalitis ranging from mild to moderate in severity, indicating a significant (P = 0.031) difference in the neurovirulence of the two recombinants. In both groups of macaques, CD4+ cell counts declined gradually during infection and there was no significant difference in the rate of the decline between the two groups of macaques. This study demonstrated that macrophage tropism alone is not sufficient for the development of neurological disease. In addition, it showed that while sequences in the surface portion of the envelope gene determine macrophage tropism, additional sequences derived from the transmembrane portion of envelope and/or nef confer neurovirulence.  相似文献   

19.
The wild mouse ecotropic retrovirus, Cas-Br-E, induces progressive, noninflammatory spongiform neurodegenerative disease in susceptible mice. Functional genetic analysis of the Cas-Br-E genome indicates that neurovirulence maps to the env gene, which encodes the surface glycoprotein responsible for binding and fusion of virus to host cells. To understand how the envelope protein might be involved in the induction of disease, we examined the regional and temporal expression of Cas-Br-E Env protein in the central nervous systems (CNS) of mice infected with the highly neurovirulent chimeric virus FrCas(E). We observed that multiple isoforms of Cas-Br-E Env were expressed in the CNS, with different brain regions exhibiting unique patterns of processed Env glycoprotein. Specifically, the expression of gp70 correlated with regions showing microglial infection and spongiform neurodegeneration. In contrast, regions high in neuronal infection and without neurodegenerative changes (the cerebellum and olfactory bulb) were characterized by a gp65 Env protein isoform. Sedimentation analysis of brain region extracts indicated that gp65 rather than gp70 was incorporated into virions. Biochemical analysis of the Cas-Br-E Env isoforms indicated that they result from differential processing of N-linked sugars. Taken together, these results indicate that differential posttranslational modification of the Cas-Br-E Env is associated with a failure to incorporate certain Env isoforms into virions in vivo, suggesting that defective viral assembly may be associated with the induction of spongiform neurodegeneration.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号