首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, we studied the effects of cortisol and cortisone on the age-related decrease in locomotion in the nematode Caenorhabditis elegans and on the tolerance to heat stress at 35 °C and to oxidative stress induced by the exposure to 0.1% H2O2. Changes in mRNA expression levels of C. elegans genes related to stress tolerance were also analyzed. Cortisol treatment restored nematode movement following heat stress and increased viability under oxidative stress, but also shortened worm lifespan. Cortisone, a cortisol precursor, also restored movement after heat stress. Additionally, cortisol treatment increased mRNA expression of the hsp-12.6 and sod-3 genes. Furthermore, cortisol treatment failed to restore movement of daf-16-deficient mutants after heat stress, whereas cortisone failed to restore the movement of dhs-30-deficient mutants after heat stress. In conclusion, the results suggested that cortisol promoted stress tolerance via DAF-16 but shortened the lifespan, whereas cortisone promoted stress tolerance via DHS-30.  相似文献   

2.
Ca2+ channel Cch1, and its subunit Mid1, has been suggested as the protein complex responsible for mediating Ca2+ influx, which is often employed by fungal cells to maintain cell survival. The abilities of morphological switch and response to stress conditions are closely related to pathogenicity in Candida albicans. Cch1 and Mid1 activity are required for virulence of Cryptococcus neoformans and Claviceps purpurea, respectively. To investigate whether Cch1 and Mid1 also play a role in the virulence of C. albicans, we constructed cch1Δ/Δ and mid1Δ/Δ mutant strains for functional analysis of CCH1 and MID1. Although both of the mutants displayed the ability of yeast-to-hypha transition, they were defective in hyphae maintenance and invasive growth. Interestingly, deletion of CCH1 or MID1 in C. albicans led to an obvious defect phenotype in oxidative stress response. Moreover, the virulence of the mutants was reduced in a mouse model. Our results demonstrated that Cch1 and Mid1 activity are related to the virulence of C. albicans and may provide a new antifungal target.  相似文献   

3.
4.
5.
The antifungal plant defensin RsAFP2 isolated from radish interacts with fungal glucosylceramides and induces apoptosis in Candida albicans. To further unravel the mechanism of RsAFP2 antifungal action and tolerance mechanisms, we screened a library of 2868 heterozygous C. albicans deletion mutants and identified 30 RsAFP2‐hypersensitive mutants. The most prominent group of RsAFP2 tolerance genes was involved in cell wall integrity and hyphal growth/septin ring formation. Consistent with these genetic data, we demonstrated that RsAFP2 interacts with the cell wall of C. albicans, which also contains glucosylceramides, and activates the cell wall integrity pathway. Moreover, we found that RsAFP2 induces mislocalization of septins and blocks the yeast‐to‐hypha transition in C. albicans. Increased ceramide levels have previously been shown to result in apoptosis and septin mislocalization. Therefore, ceramide levels in C. albicans membranes were analysed following RsAFP2 treatment and, as expected, increased accumulation of phytoC24‐ceramides in membranes of RsAFP2‐treated C. albicans cells was detected. This is the first report on the interaction of a plant defensin with glucosylceramides in the fungal cell wall, causing cell wall stress, and on the effects of a defensin on septin localization and ceramide accumulation.  相似文献   

6.
7.
8.
Neutrophils are key players during Candida albicans infection. However, the relative contributions of neutrophil activities to fungal clearance and the relative importance of the fungal responses that counteract these activities remain unclear. We studied the contributions of the intra- and extracellular antifungal activities of human neutrophils using diagnostic Green Fluorescent Protein (GFP)-marked C. albicans strains. We found that a carbohydrate starvation response, as indicated by up-regulation of glyoxylate cycle genes, was only induced upon phagocytosis of the fungus. Similarly, the nitrosative stress response was only observed in internalised fungal cells. In contrast, the response to oxidative stress was observed in both phagocytosed and non-phagocytosed fungal cells, indicating that oxidative stress is imposed both intra- and extracellularly. We assessed the contributions of carbohydrate starvation, oxidative and nitrosative stress as antifungal activities by analysing the resistance to neutrophil killing of C. albicans mutants lacking key glyoxylate cycle, oxidative and nitrosative stress genes. We found that the glyoxylate cycle plays a crucial role in fungal resistance against neutrophils. The inability to respond to oxidative stress (in cells lacking superoxide dismutase 5 or glutathione reductase 2) renders C. albicans susceptible to neutrophil killing, due to the accumulation of reactive oxygen species (ROS). We also show that neutrophil-derived nitric oxide is crucial for the killing of C. albicans: a yhb1Δ/Δ mutant, unable to detoxify NO, was more susceptible to neutrophils, and this phenotype was rescued by the nitric oxide scavenger carboxy-PTIO. The stress responses of C. albicans to neutrophils are partially regulated via the stress regulator Hog1 since a hog1Δ/Δ mutant was clearly less resistant to neutrophils and unable to respond properly to neutrophil-derived attack. Our data indicate that an appropriate fungal response to all three antifungal activities, carbohydrate starvation, nitrosative stress and oxidative stress, is essential for full wild type resistance to neutrophils.  相似文献   

9.
10.
11.
Several important classes of antifungal agents, including the azoles, act by blocking ergosterol biosynthesis. It was recently reported that the azoles cause massive disruption of the fungal vacuole in the prevalent human pathogen Candida albicans. This is significant because normal vacuolar function is required to support C. albicans pathogenicity. This study examined the impact of the morpholine antifungals, which inhibit later steps of ergosterol biosynthesis, on C. albicans vacuolar integrity. It was found that overexpression of either the ERG2 or ERG24 gene, encoding C-8 sterol isomerase or C-14 sterol reductase, respectively, suppressed C. albicans sensitivity to the morpholines. In addition, both erg2Δ/Δ and erg24Δ/Δ mutants were hypersensitive to the morpholines. These data are consistent with the antifungal activity of the morpholines depending upon the simultaneous inhibition of both Erg2p and Erg24p. The vacuoles within both erg2Δ/Δ and erg24Δ/Δ C. albicans strains exhibited an aberrant morphology and accumulated large quantities of the weak base quinacrine, indicating enhanced vacuolar acidification compared with that of control strains. Both erg mutants exhibited significant defects in polarized hyphal growth and were avirulent in a mouse model of disseminated candidiasis. Surprisingly, in a mouse model of vaginal candidiasis, both mutants colonized mice at high levels and induced a pathogenic response similar to that with the controls. Thus, while targeting Erg2p or Erg24p alone could provide a potentially efficacious therapy for disseminated candidiasis, it may not be an effective strategy to treat vaginal infections. The potential value of drugs targeting these enzymes as adjunctive therapies is discussed.  相似文献   

12.
In plant cells, glycans attached to asparagine (N) residues of proteins undergo various modifications in the endoplasmic reticulum and the Golgi apparatus. The N-glycan modifications in the Golgi apparatus result in complex N-glycans attached to membrane proteins, secreted proteins and vacuolar proteins. Recently, we have investigated the role of complex N-glycans in plants using a series of Arabidopsis thaliana mutants affected in complex N-glycan biosynthesis.1 Several mutant plants including complex glycan 1 (cgl1) displayed a salt-sensitive phenotype during their root growth, which was associated with radial swelling and loss of apical dominance. Among the proteins whose N-glycans are affected by the cgl1 mutation is a membrane anchored β1,4-endoglucanase, KORRIGAN1/RADIALLY SWOLLEN 2 (KOR1/RSW2) involved in cellulose biosynthesis. The cgl1 mutation strongly enhanced the phenotype of a temperature sensitive allele of KOR1/RSW2 (rsw2-1) even at the permissive temperature. This establishes that plant complex N-glycan modification is important for the in vivo function of KOR1/RSW2. Furthermore, rsw2-1 as well as another cellulose biosynthesis mutant rsw1-1 exhibited also a salt-sensitive phenotype at the permissive temperature. Based on these findings, we propose that one of the mechanisms that cause salt-induced root growth arrest is dysfunction of cell wall biosynthesis that induces mitotic arrest in the root apical meristem.Key words: Arabidopsis, salt stress, complex N-glycans, β1,4-endoglucanase, cell wallIn eukaryotic cells, both soluble and membrane proteins that enter the endoplasmic reticulum (ER) system may undergo post-translational modifications called N-glycosylation. N-glycosylation occurs in two phases, namely, core glycosylation in the ER and glycan maturation in the Golgi apparatus.2,3 The process and roles of core glycosylation in the ER are well established and ubiquitous for eukaryotes. In the ER, pre-assembled core oligosaccharides (Glc3Man9GlcNac2) are transferred to asparagine residues of the Asn-X-Ser/Thr motives in nascent polypeptides by the function of an oligosaccharyltransferase complex (OST). Terminal glucose residues are recognition sites for ER chaperones calnexin and calreticulin, and thus core N-glycans in the ER function in correct folding of newly synthesized proteins.2,3Greater diversity exists in the N-glycan maturation steps in the Golgi apparatus and conspicuous roles for the resulting complex N-glycans.2,4 In general, mature N-glycan structures are classified as oligomannosidic type, hybrid or complex type. Glycoprotein precursors that are exported from the ER carry high-mannose type N-glycan intermediates. Numerous enzymes are involved in the conversion of high-mannose type N-glycans to mature complex N-glycans. The functions of N-glycan modifications in the Golgi apparatus are well established in humans, because lack of N-glycan maturation results in Type II Congenital Disorders of Glycosylation.5 In Drosophila melanogaster, the Golgi pathway is necessary for development and function of the central nervous system,6 whereas in Candida albicans, it is necessary for cell wall integrity and virulence.7The first Arabidopsis thaliana mutant lacking complex N-glycans was reported in 1993.8 Since then, several mutants and transgenic plants altered in N-glycan maturation in the Golgi apparatus have been reported.912 Plants with altered N-glycan modification pathways that are devoid of potentially immunogenic complex N-glycans are used for the production of pharmaceutical proteins12,13 and could serve as potential food crops with reduced allergenicity. Until recently, however, plant complex N-glycans have not been associated with essential biological functions in their host plants due to lack of obvious phenotypes of mutant plants defective in complex N-glycan biosynthesis. We recently reported that mutants defective in complex N-glycans show enhanced salt sensitivity, establishing that complex N-glycans are indispensable for certain biological functions.1Our previous study using an OST subunit mutant stt3a indicated that protein glycosylation could affect salt tolerance and root growth of A. thaliana.14 Since OST functions upstream of protein folding processes in the ER, stt3a caused an unfolded protein response (UPR), which is a general ER stress response to protein folding defects, as well as accumulation of under-glycosylated proteins. In our recent study, we tried to address whether the salt stress response of the mutant is caused by an activation of UPR, or by a shortage of functional glycoproteins produced by the cells.1 The cgl1 mutant is defective in N-acetylglucosaminyltransferase in the Golgi apparatus15 and only able to produce oligomannosidic-type N-glycans but not complex-type N-glycans.8 cgl1 mutants exposed to salt stress exhibited root growth arrest and radial swelling similar to stt3a mutants, however, unlike stt3a, the cgl1 mutation did not cause UPR as judged by expression of an UPR marker gene, BiPpro-GUS. This indicated that salt sensitivity of cgl1 (and likely also of stt3a) is due to lack of mature N-glycans essential for functionality of certain glycoprotein(s).We have determined that a membrane-anchored β1,4-endoglucanase, KORRIGAN1/RADIAL SWELLING2 (KOR1/RSW2), which functions in cellulose biosynthesis, is a target of CGL1 and involved in the salt stress response of A. thaliana.1 A temperature sensitive rsw2-1 allele16 showed specific genetic interaction with both cgl1 and stt3a mutations. The corresponding double mutants exhibited spontaneous growth defects at the permissive temperature that were reminiscent of those of rsw2-1 at the restrictive temperature, of cgl1 and stt3a plants treated with salt, and of the rsw1-1 rsw2-1 double mutant that combines two cellulose deficiency mutations. This showed that cgl1 and stt3a enhance cellulose deficiency of rsw2-1, and in turn indicate that the KOR1/RSW2 protein requires complex N-glycans for its function in vivo. Further pyramiding of these mutations resulted in incremental enhancement of growth defects as well as developmental defects of the host plants (Kang et al., (2008), and Fig. 1). Importance of functional cellulose biosynthesis for salt tolerance was further supported by the novel finding of increased salt-sensitivity of rsw2-1 and rsw1-1 single mutants.1Our previous and current data have implications that affect our view of protein N-glycosylation in plants. First, after all, plant complex N-glycans confer important in vivo functions to secreted/secretory glycoproteins, i.e., protect root growth from salt/osmotic stress. In contrast to core oligosaccharides in the ER, which globally affect protein folding, complex N-glycans appear to function at the individual protein level. Second, one of the targets of salt/osmotic stress is a component of the cellulose biosynthesis machinery, namely KOR1/RSW2 that requires complex N-glycans for its function. KOR1/RSW2 provides a link to how complex N-glycans protect plants from salt/osmotic stress. However, the mechanism by which salt stress triggers the growth arrest via KOR1/RSW2 dysfunction is not yet understood. We have previously shown that the root apical meristem of stt3a exhibits cell cycle arrest under salt stress, but cell differentiation and lateral root formation continued in the same root tip.14 This implies that plants, in response to salt stress and compromised cell-wall biosynthesis at the root apical meristem, specifically attenuate cell cycle progression at the old meristem and initiate new meristems. A signal transduction pathway that coordinates cell-wall integrity and cell proliferation is well documented in Sacchromyces cerevisiae, where Protein kinase C1 (Pkc1) and a MAP kinase cascade play essential roles.17 Interestingly, both S. cerevisiae Stt3 and Och1 (a mannosyltransferase in the Golgi apparatus) are involved in the cell-wall integrity pathway.17 In A. thaliana, mutations in the receptor kinase THESEUS1 suppressed hypocotyl elongation defects and ectopic lignification in several cellulose deficient mutants.18 However, since THE1 is expressed in elongation zones but not in cell division zones of root tips, and the1 did not suppress the kor1-1 phenotype,18 it is unlikely that THE1 is involved in the regulation of the salt stress response at the root apical meristem. This implies that dividing cells and expanding cells employ distinct mechanism to sense cellulose deficiency. Understanding how complex N-glycans regulate cell-wall biosynthesis and cell proliferation is an exciting task for the coming years.? Open in a separate windowFigure 1Scanning electron micrograph of one-week-old wild type (A and D), rsw2-1 stt3a-2 cgl1-T (B and E) and rsw2-1 rsw1-1 stt3a-2 cgl1-T (C and F) seedlings grown at 18°C. Severe growth defects in mutants are obvious. In shoot apical meristem (D–F), aberrant trichome development is seen in rsw2-1 stt3a-2 cgl1-T (E). In rsw2-1 rsw1-1 stt3a-2 cgl1-T (F), the meristem is transformed into unorganized mass of cells. Bars indicate 0.5 mm.  相似文献   

13.
14.
Protein phosphatases are critical for the regulation of many cellular processes. Null mutants of 21 putative protein phosphatases of Candida albicans were constructed by consecutive allele replacement using the URA3 and ARG4 marker genes. A simple silkworm model of C. albicans infection was used to screen the panel of mutants. Four null mutant (cmp1Δ, yvh1Δ, sit4Δ, and ptc1Δ) strains showed attenuated virulence in the silkworm model relative to that of control and parental strains. Three of the mutants, the cmp1Δ, yvh1Δ, and sit4Δ mutants, had previously been identified as affecting virulence in a conventional mouse model, indicating the validity of the silkworm model screen. Disruption of the putative protein phosphatase gene PTC1 of C. albicans, which has 52% identity to the Saccharomyces cerevisiae type 2C protein phosphatase PTC1, significantly reduced virulence in the silkworm model. The mutant was also avirulent in a mouse model of disseminated candidiasis. Reintroducing either of the C. albicans PTC1 alleles into the disruptant strain, using a cassette containing either allele under the control of a constitutive ACT1 promoter, restored virulence in both infection models. Characterization of ptc1Δ revealed other phenotypic traits, including reduced hyphal growth in vitro and in vivo, and reduced extracellular proteolytic activity. We conclude that PTC1 may contribute to pathogenicity in C. albicans.  相似文献   

15.
16.
17.
Candida albicans is usually a harmless human commensal. Because inflammatory responses are not normally induced by colonization, antimicrobial peptides are likely integral to first-line host defense against invasive candidiasis. Thus, C. albicans must have mechanisms to tolerate or circumvent molecular effectors of innate immunity and thereby colonize human tissues. Prior studies demonstrated that an antimicrobial peptide-resistant strain of C. albicans, 36082R, is hypervirulent in animal models versus its susceptible counterpart (36082S). The current study aimed to identify a genetic basis for antimicrobial peptide resistance in C. albicans. Screening of a C. albicans genomic library identified SSD1 as capable of conferring peptide resistance to a susceptible surrogate, Saccharomyces cerevisiae. Sequencing confirmed that the predicted translation products of 36082S and 36082R SSD1 genes were identical. However, Northern analyses corroborated that SSD1 is expressed at higher levels in 36082R than in 36082S. In isogenic backgrounds, ssd1Δ/ssd1Δ null mutants were significantly more susceptible to antimicrobial peptides than parental strains but had equivalent susceptibilities to nonpeptide stressors. Moreover, SSD1 complementation of ssd1Δ/ssd1Δ mutants restored parental antimicrobial peptide resistance phenotypes, and overexpression of SSD1 conferred enhanced peptide resistance. Consistent with these in vitro findings, ssd1 null mutants were significantly less virulent in a murine model of disseminated candidiasis than were their parental or complemented strains. Collectively, these results indicate that SSD1 is integral to C. albicans resistance to host defense peptides, a phenotype that appears to enhance the virulence of this organism in vivo.  相似文献   

18.
19.
Candida albicans causes opportunistic fungal infections usually hidden among more dominant bacteria and does not exhibit high pathogenicity in vivo. Among the elderly, due to reduced host resistance to pathogens attributable to immunoscenesence, oral candidiasis is more likely to develop often leading to systemic candidiasis. Surface pre-reacted glass ionomer filler (S-PRG filler) is an ion-releasing functional bioactive glass that can release and recharge six ions which in turn strengthens tooth structure, inhibits demineralization arising from dental caries, and suppresses dental plaque accumulation. However, its effects on C. albicans have never been elucidated. Here, we evaluated the effects of ion released from S-PRG filler on C. albicans. Results show that extraction liquids containing released ions (ELIS) decreased the amount of hydrogen peroxide and catalase activity in C. albicans. Moreover, ELIS presence was found to affect C. albicans: (1) suppression of fungal growth and biofilm formation, (2) prevent adherence to denture base resin, (3) inhibit dimorphism conversion, and (4) hinder the capability to produce secreted aspartyl proteinase. Taken together, our findings suggest that ELIS induces oxidative stress in C. albicans and suppresses its growth and pathogenicity. In this regard, we propose that ELIS has the potential to be clinically used to help prevent the onset and inhibition of oral candidiasis among the elderly population.  相似文献   

20.
Candida albicans is a common opportunistic fungal pathogen, causing both superficial candidiasis and life-threatening systemic infections in immune-compromised individuals. Calcium signaling is responsible for this pathogen in responding to several stresses, such as antifungal drugs, alkaline pH and membrane-perturbing agents. Our recent study revealed that it is also involved in oxidative stress response. In this study, we investigated the effect of verapamil, an L-type voltage-gated calcium channel blocker, on oxidative stress response in this fungus. The addition of verapamil resulted in increased sensitivity to the oxidative agent H2O2, which is associated with a decrease of calcium fluctuation under the stress. Moreover, this agent caused enhanced oxidative stress, with increased levels of ROS and enhanced dysfunction of the mitochondria under the oxidative stress. Further investigations in SOD activity, GSH contents and expression of oxidative stress response-related genes indicated that the effect of verapamil is related to the repression of oxidative stress response. Our findings demonstrated that verapamil has an inhibitory effect on oxidative stress response, confirming the relationship between calcium signaling and oxidative stress in C. albicans. Therefore, calcium channels may be potential targets for therapy to enhance the efficacy of oxidative stress against C. albicans-related infections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号