共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
拟南芥内膜Na,K~+/H~+反向转运体(Endosomal NHX)的亚细胞定位、离子转运特性及生物学功能阐释取得了重要进展。拟南芥内膜Na~+,K~+/H~+反向转运体包含AtNHX5和AtNHX6两个成员,它们的氨基酸序列相似性为78.7%。研究表明,AtNHX5和AtNHX6具有功能冗余,它们都定位在高尔基体(Golgi)、反面高尔基体管网状结构(TGN)、内质网(ER)和液胞前体(PVC),参与调控耐盐胁迫、pH平衡和K~+平衡等。有报道显示内膜NHXs跨膜结构域存在能够调控自身离子活性的酸性保守氨基酸残基,对其自身功能具有决定性作用。最新研究结果表明,拟南芥内膜NHXs影响囊泡运输和蛋白存贮,并参与生长素介导的植物生长和发育。文中主要对拟南芥内膜NHXs的亚细胞定位、离子转运、功能及应用进展进行了概述。 相似文献
3.
A novel intracellular K+/H+ antiporter related to Na+/H+ antiporters is important for K+ ion homeostasis in plants 总被引:13,自引:0,他引:13
Venema K Belver A Marin-Manzano MC Rodríguez-Rosales MP Donaire JP 《The Journal of biological chemistry》2003,278(25):22453-22459
In this study we have identified the first plant K+/H+ exchanger, LeNHX2 from tomato (Lycopersicon esculentum Mill. cv. Moneymaker), which is a member of the intracellular NHX exchanger protein family. The LeNHX2 protein, belonging to a subfamily of plant NHX proteins closely related to the yeast NHX1 protein, is abundant in roots and stems and is induced in leaves by short term salt or abscisic acid treatment. LeNHX2 complements the salt- and hygromycin-sensitive phenotype caused by NHX1 gene disruption in yeast, but affects accumulation of K+ and not Na+ in intracellular compartments. The LeNHX2 protein co-localizes with Prevacuolar and Golgi markers in a linear sucrose gradient in both yeast and plants. A histidine-tagged version of this protein could be purified and was shown to catalyze K+/H+ exchange but only minor Na+/H+ exchange in vitro. These data indicate that proper functioning of the endomembrane system relies on the regulation of K+ and H+ homeostasis by K+/H+ exchangers. 相似文献
4.
Xu H Jiang X Zhan K Cheng X Chen X Pardo JM Cui D 《Archives of biochemistry and biophysics》2008,473(1):8-15
The functional analysis of the sodium exchanger SOS1 from wheat, TaSOS1, was undertaken using Saccharomyces cerevisiae as a heterologous expression system. The TaSOS1 protein, with significant sequence homology to SOS1 sodium exchangers from Arabidopsis and rice, is abundant in roots and leaves, and is induced by salt treatment. TaSOS1 suppressed the salt sensitivity of a yeast strain lacking the major Na+ efflux systems by decreasing the cellular Na+ content while increasing K+ content. Na+/H+ exchange activity of purified plasma membrane from yeast cells expressing TaSOS1 was higher than controls transformed with empty vector. These results demonstrate that TaSOS1 contributes to plasma membrane Na+/H+ exchange. 相似文献
5.
In plants, Na+/H+ exchangers in the plasma membrane are critical for growth in high levels of salt, removing toxic Na+ from the cytoplasm by transport out of the cell. The molecular identity of a plasma membrane Na+/H+ exchanger in Arabidopsis (SOS1) has recently been determined. In this study, immunological analysis provided evidence that SOS1 localizes to the plasma membrane of leaves and roots. To characterize the transport activity of this protein, purified plasma membrane vesicles were isolated from leaves of Arabidopsis. Na+/H+ exchange activity, monitored as the ability of Na to dissipate an established pH gradient, was absent in plants grown without salt. However, exchange activity was induced when plants were grown in 250 mm NaCl and increased with prolonged salt exposure up to 8 d. H+-coupled exchange was specific for Na, because chloride salts of other monovalent cations did not dissipate the pH gradient. Na+/H+ exchange activity was dependent on Na (substrate) concentration, and kinetic analysis indicated that the affinity (apparent Km) of the transporter for Na+ is 22.8 mm. Data from two experimental approaches supports electroneutral exchange (one Na+ exchanged for one proton): (a) no change in membrane potential was measured during the exchange reaction, and (b) Na+/H+ exchange was unaffected by the presence or absence of a membrane potential. Results from this research provide a framework for future studies into the regulation of the plant plasma membrane Na+/H+ exchanger and its relative contribution to the maintenance of cellular Na+ homeostasis during plant growth in salt. 相似文献
6.
Glucose‐6‐phosphate dehydrogenase (G6PDH) is important for the activation of plant resistance to environmental stresses, and ion homeostasis is the physiological foundation for living cells. In this study, we investigated G6PDH roles in modulating ion homeostasis under salt stress in Carex moorcroftii callus. G6PDH activity increased to its maximum in 100 mM NaCl treatment and decreased with further increased NaCl concentrations. K+/Na+ ratio in 100 mM NaCl treatment did not exhibit significant difference compared with the control; however, in 300 mM NaCl treatment, it decreased. Low‐concentration NaCl (100 mM) stimulated plasma membrane (PM) H+‐ATPase and NADPH oxidase activities as well as Na+/H+ antiporter protein expression, whereas high‐concentration NaCl (300 mM) decreased their activity and expression. When G6PDH activity and expression were reduced by glycerol treatments, PM H+‐ATPase and NADPH oxidase activities, Na+/H+ antiporter protein level and K+/Na+ ratio dramatically decreased. Simultaneously, NaCl‐induced hydrogen peroxide (H2O2) accumulation was abolished. Exogenous application of H2O2 increased G6PDH, PM H+‐ATPase and NADPH oxidase activities, Na+/H+ antiporter protein expression and K+/Na+ ratio in the control and glycerol treatments. Diphenylene iodonium (DPI), the NADPH oxidase inhibitor, which counteracted NaCl‐induced H2O2 accumulation, decreased G6PDH, PM H+‐ATPase and NADPH oxidase activities, Na+/H+ antiporter protein level and K+/Na+ ratio. Western blot result showed that G6PDH expression was stimulated by NaCl and H2O2, and blocked by DPI. Taken together, G6PDH is involved in H2O2 accumulation under salt stress. H2O2, as a signal, upregulated PM H+‐ATPase activity and Na+/H+ antiporter protein level, which subsequently resulted in the enhanced K+/Na+ ratio. G6PDH played a central role in the process. 相似文献
7.
Polyamines improve K+/Na+ homeostasis in barley seedlings by regulating root ion channel activities 总被引:4,自引:0,他引:4 下载免费PDF全文
Polyamines are known to increase in plant cells in response to a variety of stress conditions. However, the physiological roles of elevated polyamines are not understood well. Here we investigated the effects of polyamines on ion channel activities by applying patch-clamp techniques to protoplasts derived from barley (Hordeum vulgare) seedling root cells. Extracellular application of polyamines significantly blocked the inward Na(+) and K(+) currents (especially Na(+) currents) in root epidermal and cortical cells. These blocking effects of polyamines were increased with increasing polycation charge. In root xylem parenchyma, the inward K(+) currents were blocked by extracellular spermidine, while the outward K(+) currents were enhanced. At the whole-plant level, the root K(+) content, as well as the root and shoot Na(+) levels, was decreased significantly by exogenous spermidine. Together, by restricting Na(+) influx into roots and by preventing K(+) loss from shoots, polyamines were shown to improve K(+)/Na(+) homeostasis in barley seedlings. It is reasonable to propose that, therefore, elevated polyamines under salt stress should be a self-protecting response for plants to combat detrimental consequences resulted from imbalance of Na(+) and K(+). 相似文献
8.
Jinling Zhai Haixia Xu Xinli Cong Yongchuan Deng Zhihui Xia Xi Huang Gangping Hao Xingyu Jiang 《Acta Physiologiae Plantarum》2013,35(1):161-173
A large number of plant Ca2+/H+ exchangers have been identified in endomembranes, but far fewer have been studied for Ca2+/H+ exchange in plasma membrane so far. To investigate the Ca2+/H+ exchange in plasma membrane here, inside-out plasma membrane vesicles were isolated from Arabidopsis thaliana leaves using aqueous two-phase partitioning method. Ca2+/H+ exchange in plasma membrane vesicles was measured by Ca2+-dependent dissipation of a pre-established pH gradient. The results showed that transport mediated by the Ca2+/H+ exchange was optimal at pH 7.0, and displayed transport specificity for Ca2+ with saturation kinetics at K m = 47 μM. Sulfate and vanadate inhibited pH gradient across vesicles and decreased the Ca2+-dependent transport of H+ out of vesicles significantly. When the electrical potential across plasma membrane was dissipated with valinomycin and potassium, the rate of Ca2+/H+ exchange increased comparing to control without valinomycin effect, suggesting that the Ca2+/H+ exchange generated a membrane potential (interior negative), i.e. that the stoichiometric ratio for the exchange is greater than 2H+:Ca2+. Eosin Y, a Ca2+-ATPase inhibitor, drastically inhibited Ca2+/H+ exchange in plasma membrane as it does for the purified Ca2+-ATPase in proteoliposomes, indicating that measured Ca2+/H+ exchange activity is mainly due to a plasma membrane Ca2+ pump. These suggest that calcium (Ca2+) is transported out of Arabidopsis cells mainly through a Ca2+-ATPase-mediated Ca2+/H+ exchange system that is driven by the proton-motive force from the plasma membrane H+-ATPase. 相似文献
9.
拟南芥液泡膜Na+/H+逆向转运蛋白的研究进展 总被引:2,自引:0,他引:2
拟南芥液泡膜Na /H 逆向转运蛋白是由AtNHX1基因编码的一个在盐胁迫中起重要作用的蛋白。本文综述了AtNHX1的基本结构、功能及作用机制,展望其作为有效植物耐盐基因的前景,并对拟南芥液泡膜Na /H 逆向转运蛋白基因家族其他成员的研究,也做了相应的概括。 相似文献
10.
Stimulation of platelets with thrombin, ADP and epinephrine has recently been shown to activate a Na+/H+ antiporter, with a resulting alkalinization of the cytoplasm. Unlike thrombin, however, epinephrine is incapable of directly activating phospholipase C, but is well known to potentiate the effects of thrombin on this enzyme and other subsequent steps of platelet activation. Therefore, we have studied the involvement of the Na+/H+ antiporter in this aspect of epinephrine action to see whether alkalinization of platelet cytosol could be a requirement for agonists to stimulate inositol phospholipid hydrolysis and mobilize cellular Ca2+ stores. Alpha-thrombin induced the rapid formation of inositol trisphosphate with a parallel mobilization of intracellular Ca2+ stores. Epinephrine alone had no effect on either of these parameters. The response to thrombin desensitized over a period of minutes, and after this had occurred, epinephrine was able to activate phospholipase C and induce the release of intracellular Ca2+. This showed that epinephrine was able to recouple thrombin receptors to phospholipase C, and this appeared to be mediated by the same mechanism which is involved in potentiation by epinephrine of thrombin-stimulation of phospholipase C. These effects of epinephrine were not altered by inhibition of the Na+/H+ antiporter with ethylisopropylamiloride or by use of the Na+/H+ ionophore, monensin. We conclude that epinephrine potentiates thrombin-induced responses by a mechanism which is unrelated to its effects on the Na+/H+ antiporter, and this is not a requirement for thrombin-induced phospholipase C activation. 相似文献
11.
A plasma membrane Na+/H+ antiporter gene (CsSOS1) was separated from cucumber (Cucumis sativus L.) plants by RT-PCR and RACE methods. Sequence analysis indicated that the full-length CsSOS1 cDNA was 3638 bp long with an open reading frame of 3435 bp long encoding a protein of 1145 amino acids. The deduced protein contained conserved structural domains and shared a high similarity with plasma membrane type Na+/H+ antiporters from other plants. TMpred prediction showed that CsSOS1 had 11 transmembrane domains. As shown by RT-PCR, the expression of CsSOS1 was tissue-specific and increased in the root but decreased in the leaves with increasing NaCl concentration. In addition, expression of CsSOS1 in ATX3 mutant yeast could grow on medium containing NaCl and enhanced AXT3 salt tolerance. These results suggest that the CsSOS1 plays a key role in cucumber plants under salt stress. 相似文献
12.
13.
This study characterized the activation of the regulatory activity of the Na+/H+ antiporter during fertilization of hamster embryos. Hamster oocytes appeared to lack any mechanism for the regulation of intracellular pH in the acid range. Similarly, no Na+/H+ antiporter activity could be detected in embryos that were collected from the reproductive tract between 1 and 5 h post-egg activation (PEA). Activity of the Na+/H+ antiporter was first detected in embryos collected at 5.5 h PEA and gradually increased to reach maximal activity in embryos collected at 7 h PEA. Parthenogenetically activated one-cell and two-cell embryos demonstrate Na+/H+ antiporter activity, indicating that antiporter activity is maternally derived and initiated by activation of the egg. The inability of cycloheximide, colchicine, or cytochalasin D to affect initiation of antiporter activity indicates that antiporter appearance is not dependent on the synthesis of new protein or recruitment of existing protein to the cell membrane. In contrast, incubation of one-cell embryos with sphingosine did inhibit the appearance of Na+/H+ antiporter activity, showing that inhibition of normal protein kinase C activity is detrimental to antiporter function. Furthermore, incubation of oocytes with a phorbol ester which stimulates protein kinase C activity induced Na+/H+ antiporter activity in oocytes in which the activity was previously absent. Incubation with an intracellular calcium chelator also reduced the appearance of antiporter activity. Taken together, these data indicate that the appearance of Na+/H+ antiporter activity following egg activation may be due, at least in part, to regulation by protein kinase C and intracellular calcium levels. 相似文献
14.
Brini F Hanin M Mezghani I Berkowitz GA Masmoudi K 《Journal of experimental botany》2007,58(2):301-308
Transgenic Arabidopsis plants overexpressing the wheat vacuolarNa+/H+ antiporter TNHX1 and H+-PPase TVP1 are much more resistantto high concentrations of NaCl and to water deprivation thanthe wild-type strains. These transgenic plants grow well inthe presence of 200 mM NaCl and also under a water-deprivationregime, while wild-type plants exhibit chlorosis and growthinhibition. Leaf area decreased much more in wild-type thanin transgenic plants subjected to salt or drought stress. Theleaf water potential was less negative for wild-type than fortransgenic plants. This could be due to an enhanced osmoticadjustment in the transgenic plants. Moreover, these transgenicplants accumulate more Na+ and K+ in their leaf tissue thanthe wild-type plants. The toxic effect of Na+ accumulation inthe cytosol is reduced by its sequestration into the vacuole.The rate of water loss under drought or salt stress was higherin wild-type than transgenic plants. Increased vacuolar soluteaccumulation and water retention could confer the phenotypeof salt and drought tolerance of the transgenic plants. Overexpressionof the isolated genes from wheat in Arabidopsis thaliana plantsis worthwhile to elucidate the contribution of these proteinsto the tolerance mechanism to salt and drought. Adopting a similarstrategy could be one way of developing transgenic staple cropswith improved tolerance to these important abiotic stresses. Key words: H+-pyrophosphatase, Na+/H+ antiporter, salt and drought tolerance, sodium sequestration, transgenic Arabidopsis plants 相似文献
15.
16.
HUA LIU RENJIE TANG YUE ZHANG CUITING WANG QUNDAN LV XIAOSHU GAO WENBIN LI HONGXIA ZHANG 《Plant, cell & environment》2010,33(11):1989-1999
Three vacuolar cation/H+ antiporters, AtNHX1 (At5g27150), 2 (At3g05030) and 5 (At1g54370), have been characterized as functional Na+/H+ antiporters in Arabidopsis. However, the physiological functions of AtNHX3 (At5g55470) still remain unclear. In this study, the physiological functions of AtNHX3 were studied using T‐DNA insertion mutant and 35S‐driven AtNHX3 over‐expression Arabidopsis plants. RT‐PCR analyses revealed that AtNHX3 is highly expressed in germinating seeds, flowers and siliques. Experiments with AtNHX3::YFP fusion protein in tobacco protoplasts indicated that AtNHX3 is mainly localized to vacuolar membrane, with a minor localization to pre‐vacuolar compartments (PVCs) and endoplasmic reticulum (ER). Seedlings of null nhx3 mutants were hypersensitive to K+‐deficient conditions. Expression of AtNHX3 complemented the sensitivity to K+ deficiency in nhx3 seedlings. Tonoplast vesicles isolated from transgenic plants over‐expressing AtNHX3 displayed significantly higher K+/H+ exchange rates than those isolated from wild‐type plants. Furthermore, nhx3 seeds accumulated less K+ and more Na+ when both wild‐type and nhx3 were grown under normal growth condition. The overall results indicate that AtNHX3 encodes a K+/H+ antiporter required for low‐potassium tolerance during germination and early seedling development, and may function in K+ utilization and ion homeostasis in Arabidopsis. 相似文献
17.
拟南芥液泡膜Na+/H+逆向转运蛋白研究进展 总被引:2,自引:0,他引:2
盐分是植物生长发育的主要限制因素之一,而离子在胞内区室之间的选择性运动对提高植物耐盐性是至关重要的。来自于拟南芥(Arabidopsis thaliana)的AtNHX1基因可编码Na /H 逆向转运蛋白,而Na /H 逆向转运蛋白AtNHX1可将细胞质中多余的Na 排进液泡来消除Na 的毒害,维持细胞的渗透平衡,提高植物的耐盐性。简要综述了AtNHX1基因及Na /H 逆向转运蛋白AtNHX1的特征,AtNHX1的耐盐机制以及植物耐盐基因工程改良等方面的研究进展。 相似文献
18.
Root plasma membrane transporters controlling K+/Na+ homeostasis in salt-stressed barley 总被引:3,自引:0,他引:3 下载免费PDF全文
Chen Z Pottosin II Cuin TA Fuglsang AT Tester M Jha D Zepeda-Jazo I Zhou M Palmgren MG Newman IA Shabala S 《Plant physiology》2007,145(4):1714-1725
Plant salinity tolerance is a polygenic trait with contributions from genetic, developmental, and physiological interactions, in addition to interactions between the plant and its environment. In this study, we show that in salt-tolerant genotypes of barley (Hordeum vulgare), multiple mechanisms are well combined to withstand saline conditions. These mechanisms include: (1) better control of membrane voltage so retaining a more negative membrane potential; (2) intrinsically higher H(+) pump activity; (3) better ability of root cells to pump Na(+) from the cytosol to the external medium; and (4) higher sensitivity to supplemental Ca(2+). At the same time, no significant difference was found between contrasting cultivars in their unidirectional (22)Na(+) influx or in the density and voltage dependence of depolarization-activated outward-rectifying K(+) channels. Overall, our results are consistent with the idea of the cytosolic K(+)-to-Na(+) ratio being a key determinant of plant salinity tolerance, and suggest multiple pathways of controlling that important feature in salt-tolerant plants. 相似文献
19.
20.
Apse MP Sottosanto JB Blumwald E 《The Plant journal : for cell and molecular biology》2003,36(2):229-239
The function of vacuolar Na+/H+ antiporter(s) in plants has been studied primarily in the context of salinity tolerance. By facilitating the accumulation of Na+ away from the cytosol, plant cells can avert ion toxicity and also utilize vacuolar Na+ as osmoticum to maintain turgor. As many genes encoding these antiporters have been cloned from salt-sensitive plants, it is likely that they function in some capacity other than salinity tolerance. The wide expression pattern of Arabidopsis thaliana sodium proton exchanger 1 (AtNHX1) in this study supports this hypothesis. Here, we report the isolation of a T-DNA insertional mutant of AtNHX1, a vacuolar Na+/H+ antiporter in Arabidopsis. Vacuoles isolated from leaves of the nhx1 plants had a much lower Na+/H+ and K+/H+ exchange activity. nhx1 plants also showed an altered leaf development, with reduction in the frequency of large epidermal cells and a reduction in overall leaf area compared to wild-type plants. The overexpression of AtNHX1 in the nhx1 background complemented these phenotypes. In the presence of NaCl, nhx1 seedling establishment was impaired. These results place AtNHX1 as the dominant K+ and Na+/H+ antiporter in leaf vacuoles in Arabidopsis and also suggest that its contribution to ion homeostasis is important for not only salinity tolerance but development as well. 相似文献