首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Very little is known about the degree and ecological correlates of mycorrhization of lycophytes and ferns, although mycorrhizae are believed to be crucial for the majority of land plants. We screened the degree of mycorrhizal colonization for all 75 fern species recorded in nine survey plots across a wide range of soil conditions on the island of La Réunion, including five plots on lava flows of different age. Overall, 66% of all samples had mycorrhizae, but ground-dwelling species had significantly higher colonization levels (78%) than epiphytes (58%). Among ground-dwelling species, 98% of the individuals belonged to species with mycorrhizae, which was significantly higher than at the species level. Most samples had glomeromycetes as fungal partners, but septate endophytes were found in 41% of the colonized samples. While we found no significant relationship between the percentage of fern species with mycorrhizae per plot and seven ecological parameters, the percentage of fern individuals with mycorrhizal colonizations per plot significantly increased on shallow soils with high pH values and high base-saturation. This supports the idea that mycorrhizal colonizations confer an ecological advantage to colonized individuals, and that this advantage is more pronounced on nutrient-deficient sites. Our study thus provides evidence for an ecological advantage of mycorrhizae for ferns, but raises the question why, despite this advantage, species level mycorrhization among ferns (68%) is so much lower than the average for land plants (85%).  相似文献   

2.
The colonisation of land by plants may not have been possible without mycorrhizae, which supply the majority of land plants with nutrients, water and other benefits. In this sense, the mycorrhization of basal groups of land plants such as ferns and lycophytes is of particular interest, yet only about 9% of fern and lycophyte species have been sampled for their mycorrhization status, and no community‐level analyses exist for tropical fern communities. In the present study, we screened 170 specimens of ferns and lycophytes from Malaysia and Sulawesi (Indonesia), representing 126 species, and report the mycorrhization status for 109 species and 19 genera for the first time. Mycorrhizal colonisations were detected in 96 (56.5%) of the specimens, 85 of which corresponded to arbuscular mycorrhizae (AMF), three to dark‐septate endophytes (DSE) and four to mixed colonisations (AMF + DSE). DSE colonisations were lower than in comparable samples of ferns from the Andes, suggesting a geographical or taxonomic pattern in this type of colonisation. Epiphytes had significantly lower levels of colonisation (26.1%) than terrestrial plants (70.7%), probably due to the difficulty of establishment of mycorrhizal fungi in the canopy habitat.  相似文献   

3.
We studied the response of mycorrhizal and non-mycorrhizal plants to variation in soil nutrient concentration. A model for the relative growth rate (RGR) of plant biomass was constructed with soil nutrients as an explanatory variable. A literature survey was carried out to find the relative magnitudes of parameter values for mycorrhizal and non-mycorrhizal plants. Mycorrhizal plants had higher RGR at low nutrient concentrations and non-mycorrhizal plants at high nutrient concentrations. The RGR of mycorrhizal and non-mycorrhizal plants at constant versus log-normally distributed soil nutrient concentration were compared to see the effect of mycorrhizal status on responses to variation. Variation in nutrient concentration generally reduced RGR, especially in mycorrhizal plants. The RGR of a non-mycorrhizal plant may increase with variation where a growth function threshold exists, i.e. a soil nutrient concentration that must be exceeded to allow growth. Mycorrhizal plants appeared more sensitive to variation in nutrient concentration than non-mycorrhizal plants due to the higher affinity of mycorrhizal roots at low nutrient levels. However, this prediction may be reversed if mycorrhizal symbiosis considerably stabilises flow of nutrients to plant physiological processes, such that mycorrhizal plants experience less variation in soil nutrient concentration than non-mycorrhizal plants. Our results also attain broader significance by suggesting a general trade-off between competitive ability in a constant versus variable resource availability.  相似文献   

4.
The effect of ambient and elevated atmospheric CO(2) on biomass partitioning and nutrient uptake of mycorrhizal and non-mycorrhizal pea plants grown in pots in a controlled environment was studied. The hypothesis tested was that mycorrhizae would increase C assimilation by increasing photosynthetic rates and reduce below-ground biomass allocation by improving nutrient uptake. This effect was expected to be more pronounced at elevated CO(2) where plant C supply and nutrient demand would be increased. The results showed that mycorrhizae did not interact with atmospheric CO(2) concentration in the variables measured. Mycorrhizae did not affect photosynthetic rates, had no effect on root weight or root length density and almost no effect on nutrient uptake, but still significantly increased shoot weight and reduced root/shoot ratio at harvest. Elevated CO(2) increased photosynthetic rates with no evidence for down-regulation, increased shoot weight and nutrient uptake, had no effect on root weight, and actually reduced root/shoot ratio at harvest. Non-mycorrhizal plants growing at both CO(2) concentrations had lower shoot weight than mycorrhizal plants with similar nutritional status and photosynthetic rates. It is suggested that the positive effect of mycorrhizal inoculation was caused by an enhanced C supply and C use in mycorrhizal plants than in non-mycorrhizal plants. The results indicate that plant growth was not limited by mineral nutrients, but partially source and sink limited for carbon. Mycorrhizal inoculation and elevated CO(2) might have removed such limitations and their effects on above-ground biomass were independent, positive and additive.  相似文献   

5.
Arbuscular mycorrhizal symbiosis has previously been shown toalter the response of sorghum leaves to probable non-hydraulicsignals of soil drying. Our objectives here were to determine:(1) how changes in phosphorus nutrition affect this root-to-shootsignalling in sorghum, (2) if mycorrhizal symbiosis can affectthe signalling process independently of effects on host P nutrition,and (3) how two Glomus species compare in their influence onsignalling. Sorghum bicolor (L.) Moench ‘G1990A’ plants weregrown with root systems split between two pots. The 332 experimentaldesign included three levels of mycorrhizae (Glomus intraradicesSchenck & Smith, Glomus etunicatum Becker & Gerd., non-mycorrhizal),three levels of phosphorus fertilization and two levels of water(fully watered, half-dried). Declines in leaf elongation with soil drying were more consistentin non-mycorrhizal than mycorrhizal plants. Relative growthrate (RGR) of both mycorrhizal and non-mycorrhizal plants initiallydeclined when water was withheld from about half of the rootsystem. With further soil drying, RGR of mycorrhizal plantseventually returned to control levels, while RGR of non-mycorrhizalplants remained depressed throughout the drying episode. Bythe end of the drying episode, mycorrhizal symbiosis had eliminateddrying-induced declines in total plant leaf length. Shoot androot dry weight declines of half-dried plants were not affectedby mycorrhizae. Declines in stomatal conductance with soil dryingwere larger and more frequent in non-mycorrhizal than mycorrhizalplants. Leaf osmotic potential and relative water content remainedsimilar in control and half-dried plants during drying, suggestingthat altered leaf behaviour of half-dried plants was due tosome non-hydraulic factor. The two fungi did not differ substantiallyin their influence on leaf behaviour. The applied phosphorustreatments did not affect either growth or stomatal responseof halfdried plants to the root-to-shoot signal, but lengthdeclines were related to actual leaf phosphorus concentrations.Rate of soil drying did not appear to influence ultimate growthreductions. We conclude that mycorrhizal fungi can modify leaf growth responseto the root-to-shoot signal of soil drying, and that this mycorrhizaleffect can occur independently of mycorrhizal effects on plantsize or phosphorus nutrition. However, plant size and nutrition,which are commonly affected by mycorrhizal symbiosis, can alsomodify the signalling process. Key words: Drought, nutrition, root signal, Sorghum bicolor, vesicular-arbuscular  相似文献   

6.
Abstract

We tested the effect of root colonization of cucumber (Cucumis sativus L.) by the arbuscular mycorrhizal fungus (AMF) Glomus mosseae on different parameters of a plant-thrips (Frankliniella occidentalis Pergande) interaction. In leaf disc bioassays, the feeding activity, the oviposition rate, the settling preference of adult females and the developmental time (first instar larva to adult) on leaves of mycorrhizal and non-mycorrhizal plants were studied. To distinguish between a nutritional effect through an improved phosphorous (P) status of the mycorrhizal plant and other effects caused by mycorrhization, non-mycorrhizal plants watered with a nutrient solution with (+P) or without P (?P) were included in the study. Mycorrhization did not affect any of the parameters on host acceptance tested, whereas on plants with a higher P-level the duration of the non-feeding stages (pronymphae, nymphae) of F. occidentalis was shortened, but all other developmental parameters were similar as in the control and the mycorrhizal plants. Our data indicate that the polyphagous thrips F. occidentalis is neither affected by mycorrhization of cucumber plants nor by enhanced P-levels.  相似文献   

7.
8.
The influence of vesicular-arbuscular (VA) endomycorrhizal infectionon root morphology and architecture of a woody micropropagatedplant, Vitis vinifera L., has been investigated using morphologicalanalysis, modelling and topological methods. Endomycorrhizaformation caused increases in lateral root number and consequentlytotal root length but did not alter the number of root axes.The rate of production of any order lateral roots was higherin mycorrhizal than non-mycorrhizal controls. The number offirst- and second-order laterals increased linearly with timein mycorrhizal plants whilst in control plants both fitted alogistic function. Topological analysis indicated similar patternsof root branching in the early stages of growth, but the rootsystem of non-mycorrhizal plants adopted a more herringbonepattern after 8 weeks, whereas that of mycorrhizal plants retaineda more dichotomous pattern with repeated bifurcation. Althoughthe root system pattern of non-mycorrhizal vines is more efficientin exploring soil, it is more expensive for the plant in termsof energy cost versus return benefit (nutrient acquisition).In contrast mycorrhizal plants develop a more economical rootsystem which is rendered more efficient by the direct role ofthe mycorrhizal fungus in assisting nutrient absorption. Vitis vinifera L., vine, root system, modelling, topology, vesicular-arbuscular mycorrhizae  相似文献   

9.
Anthyllis cytisoides L. is highly colonized by arbuscular mycorrhizal fungi (AMF) and behaves as a drought-avoider species in the field. Our objectives were: (1) to study the response of A. cytisoides when exposed to moderate (acclimation) or severe (peak) drought and subsequent rewatering under nursery conditions; and (2) to verify if AMF improved the adaptation of A. cytisoides to stress. The soil compactness in drought-acclimated treatments increased four times compared with that of well-watered controls, which could reinforce the effects of water deficit on plant physiology. Photosynthetic rates decreased by around 50% and 70% and leaf conductance decreased by 40% and 50% in drought-acclimated non-mycorrhizal and mycorrhizal plants, respectively. Peak drought limited plant growth, accelerated leaf senescence and induced the conversion of starch into soluble sugars in the leaves of stressed plants. The accumulation of sugars could contribute to a decrease in water potential in order to achieve the required tension to let water move from soil to shoot. Mycorrhizal plants showed a two-fold higher chlorotic leaf biomass than non-mycorrhizal plants under severe drought. Moreover, mycorrhizal A. cytisoides showed enhanced epicuticular waxes on the surfaces of the remaining green leaves. Increased leaf senescence, together with wax deposition, could reduce whole plant transpiration, thus allowing mycorrhizal plants to maintain a higher leaf relative water content (50%) than non-mycorrhizal plants (35%). After drought recovery, leaf abscission in stressed mycorrhizal plants was 10 times greater than that in non-mycorrhizal plants. The results suggest that AMF conferred greater responsiveness of A. cytisoides to drought. Enhanced wax deposition and leaf senescence could be an ecological adaptation to cope with severe water deficit.  相似文献   

10.
N. S. Bolan 《Plant and Soil》1991,134(2):189-207
The beneficial effects of mycorrhizae on plant growth have often been related to the increase in the uptake of immobile nutrients, especially phosphorus (P). In this review the mechanisms for the increase in the uptake of P by mycorrhizae and the sources of soil P for mycorrhizal and non-mycorrhizal plants are examined.Various mechanisms have been suggested for the increase in the uptake of P by mycorrhizal plants. These include: exploration of larger soil volume; faster movement of P into mycorrhizal hyphae; and solubilization of soil phosphorus. Exploration of larger soil volume by mycorrhizal plants is achieved by decreasing the distance that P ions must diffuse to plant roots and by increasing the surface area for absorption. Faster movement of P into mycorrhizal hyphae is achieved by increasing the affinity for P ions and by decreasing the threshold concentration required for absorption of P. Solubilization of soil P is achieved by the release of organic acids and phosphatase enzymes. Mycorrhizal plants have been shown to increase the uptake of poorly soluble P sources, such as iron and aluminium phosphate and rock phosphates. However, studies in which the soil P has been labelled with radioactive 32P indicated that both mycorrhizal and non-mycorrhizal plants utilized the similarly labelled P sources in soil.  相似文献   

11.
Mycorrhizal and nonmycorrhizal Pinus halepensis plants were subjected to water stress by withholding irrigation for four months and then rehydrated for 30 d. Water stress affected plants growth and mycorrhizal association was unable to avoid the effects of drought on plant growth. However, when irrigation was re-established the increase in height, number of shoots, total dry mass, and chlorophyll content in the mycorrhizal plants were greater than in non-mycorrhizal plants. The decrease in soil water content decreased the leaf water potential, leaf pressure potential and stomatal conductance. These decreases were higher for nonmycorrhizal than for mycorrhizal plants, indicating that the mycorrhizal fungi permit a higher water uptake from the dry soils. The total content of inorganic solutes was not changed by presence of mycorrhizae.  相似文献   

12.
Broomsedge (Andropogon virginicus L.) is a dominant grass revegetating many abandoned coal-mined lands in West Virginia, USA. Residual soils on such sites are often characterized by low pH, low nutrients, and high aluminium. Experiments were conducted to assess the resistance of broomsedge to limited phosphorus (Pi) availability and to investigate the role that arbuscular mycorrhizal (AM) fungi play in aiding plant growth under low Pi conditions. Pregerminated mycorrhizal and non-mycorrhizal seedlings were grown in a sand-culture system with nutrient solutions containing Pi concentrations ranging from 10 to 100 microM for 8 weeks. Non-mycorrhizal plants exhibited severe inhibition of growth under Pi limitation (<60 microM). Colonization by AM fungi (combined Glomus clarum Nicolson & Schenck and Gigaspora gigantea (Nicol. & Gerd.) Gerd. & Trappe) greatly enhanced host plant growth at low Pi concentrations, but did not benefit growth when Pi was readily available (100 microM). In comparison to non-mycorrhizal plants, mycorrhizal plants had higher phosphorus use efficiency at low Pi concentrations and maintained nearly constant tissue nutrient concentrations across the gradient of Pi concentrations investigated. Manganese (Mn) and sodium (Na) accumulated in shoots of non-mycorrhizal plants under Pi limitation. Mycorrhizal plants exhibited lower instantaneous Pi uptake rates and significantly lower C(min) values compared to non-mycorrhizal plants. These patterns suggest that the symbiotic association between broomsedge roots and AM fungi effectively maintains nutrient homeostasis through changes in physiological properties, including nutrient uptake, allocation and use. The mycorrhizal association is thus a major adaptation that allows broomsedge to become established on infertile mined lands.  相似文献   

13.
The influence of arbuscular mycorrhizal fungi (AMF), Funneliformis mosseae and Rhizophagus intraradices, on plant growth, leaf water status, chlorophyll concentration, photosynthesis, nutrient concentration, and fractal dimension (FD) characteristics of black locust (Robinia pseudoacacia L.) seedlings was studied in pot culture under well-watered, moderate drought stress, and severe drought stress treatments. Mycorrhizal seedlings had higher dry biomass, leaf relative water content (RWC), and water use efficiency (WUE) compared with non-mycorrhizal seedlings. Under all treatments, AMF colonization notably enhanced net photosynthetic rate, stomatal conductance, and transpiration rate, but decreased intercellular CO2 concentration. Leaf chlorophyll a and total chlorophyll concentrations were higher in AM seedlings than those in non-AM seedlings although there was no significant difference between AMF species. AMF colonization improved leaf C, N, and P concentrations, but decreased C:N, C:P, and N:P ratios. Mycorrhizal seedlings had a larger FD value than non-mycorrhizal seedlings. The FD value was positively and significantly correlated to the plant growth parameters, photosynthesis, RWC, WUE, and nutrient concentration but negatively correlated to leaf/stem ratio, C:N and C:P ratios, and intercellular CO2 concentration. We conclude that AMF lead to an improvement of growth performance of black locust seedlings under all growth conditions, including drought stress via improving leaf water status, chlorophyll concentration, photosynthesis, and nutrient uptake. Moreover, FD technology proved to be a powerful non-destructive method to characterize the effect of AMF on the physiology of host plants during drought stress.  相似文献   

14.
The effects of Ni and Cd on growth and nutrient uptake of mycorrhizal and non-mycorrhizal Pinus sylvestris L. seedlings were investigated in a pot experiment. Seedlings were either inoculated with Laccaria bicolor (Maire) Orton or left uninoculated before being planted in pots containing a mixture of sandy soil from the B-horizon of a coniferous forest, small stones and pure quartz sand. The pots were supplied with small amounts of a balanced nutrient solution every 24 h using peristaltic pumps. Nickel or Cd were added as chlorides to the nutrient solution at levels of 85 M Ni (Ni 1), 170 M Ni (Ni 2), or 8.9 M Cd. Mycorrhizal colonisation of the roots was nearly 100% in the mycorrhizal treatments. The mycorrhizal seedlings grew significantly better than the non-mycorrhizal ones. The weight of mycorrhizal seedlings in the Ni 2 treatment was 29% lower than that of the mycorrhizal controls, but still 34% greater than that of the non-mycorrhizal seedlings not exposed to metals. There was an overall, statistically significant, negative effect of metals on plant yield. Mycorrhizal plants had lower root:shoot (R:S) ratios than non-mycorrhizal plants and the R:S ratio was increased by metal exposure, particularly in the non-mycorrhizal seedlings. Plant concentrations of Cd or Ni were not affected by mycorrhizal colonisation, but total uptake of Cd and Ni was higher in bigger mycorrhizal seedlings. Nickel decreased P concentration in all seedlings and Cd decreased P concentration in the non-mycorrhizal seedlings. Generally, the mycorrhizal seedlings grew better than non-mycorrhizal ones and had better P, K, Mg and S status. Root growth was not significantly affected by the metal treatments. The reduction in mean shoot growth of non-mycorrhizal plants, relative to the metal-free control, appeared higher than in mycorrhizal plants but was not statistically significant due to high variation in the non-mycorrhizal plants not exposed to metals. The main mycorrhizal effect was thus increased nutrient uptake and growth of the seedlings.  相似文献   

15.
Heavy metals accumulation in soils poses a potential threat to ecosystems, which, in turn, threat human health through food chains. Therefore, remediating polluted sites is important to environment and humanity. In this investigation, statice (L. sinuatum) was exposed to Cd (0, 15, 30, 60 mg kg?1 soil) or Pb (0, 100, 150, 300 mg kg?1 soil) in a pot experiment to assess its tolerance to each metal and study its phytoaccumulation capability. The benefits of mycorrhization (mixture of Glomus mosseae and G. intraradices) were also studied simultaneously. Single exposure to Cd or Pb reduced the plant growth, but statice was still relatively tolerant to both metals. The plants accumulated both metals in their roots; little was translocated to the shoots. Total Pb and total Cd accumulated by the roots was approximately 2 and 3 times higher in mycorrhizal than non-mycorrhizal plants (49 versus 147 and 595 versus 956 μg plant?1) respectively; however, mycorrhization alleviated metal phytotoxicity. The results suggest that statice is a potential candidate to be used as an ornamental plant in lead and cadmium polluted sites, mainly inoculated with arbuscular mycorrhizae. Besides that, it would be useful as a Pb or Cd controlling agent by means of phytostabilization.  相似文献   

16.
菌根真菌与植物共生营养交换机制研究进展   总被引:4,自引:0,他引:4  
菌根是陆地生态系统普遍存在的、由土壤中的菌根真菌侵染宿主植物根系形成的联合共生体.菌根的建立是以共生体双方的营养交换为基础的:菌根真菌从土壤中吸收氮、磷等营养物质并转运给宿主植物,供其生长;作为交换,植物则以脂质或糖的形式向菌根真菌提供其生长所必需的碳水化合物.近年来,菌根真菌与宿主植物间的营养交换机制一直是研究的热点,国内外对菌根真菌介导的植物营养物质吸收和转运机制的研究也取得了巨大进展.本文综述了丛枝和外生两种菌根真菌与宿主植物间营养交换的最新研究进展,尤其是碳、氮、磷等几种重要营养物质的吸收与双向转运机制,以及营养交换在菌根形成中的潜在调控作用,并对目前存在的关键问题和未来研究方向进行了分析和展望,这对菌根模型的建立及菌根效益的优化具有重要意义.  相似文献   

17.
水分胁迫下AM真菌对沙打旺生长和抗旱性的影响   总被引:7,自引:0,他引:7  
郭辉娟  贺学礼 《生态学报》2010,30(21):5933-5940
利用盆栽试验研究了水分胁迫条件下接种AM真菌对优良牧草和固沙植物沙打旺(Astragalus adsurgens Pall.)生长和抗旱性的影响。在土壤相对含水量为70%、50%和30%条件下,分别接种摩西球囊霉(Glomus mosseae)和沙打旺根际土著菌,不接种处理作为对照。结果表明,水分胁迫显著降低了沙打旺植株(无论接种AM真菌与否)的株高、分枝数、地上部干重和地下部干重,并显著提高了土著AM真菌的侵染率,对摩西球囊霉的侵染率无显著影响。接种AM真菌可以促进沙打旺生长和提高植株抗旱性,但促进效应因土壤含水量和菌种不同而存在差异。不同水分条件下,接种AM真菌显著提高了植株菌根侵染率、根系活力、地下部全N含量和叶片CAT活性。土壤相对含水量为30%和50%时,接种株地上部全N、叶片叶绿素、可溶性蛋白、脯氨酸含量和POD活性显著高于未接种株;接种AM真菌显著降低了叶片MDA含量;接种土著AM真菌的植株株高、分枝数、地上部和地下部干重显著高于未接种株。土壤相对含水量为30%时,接种AM真菌显著增加了地上部全P含量和叶片相对含水量;接种摩西球囊霉的植株株高、分枝数、地上部和地下部干重显著高于未接种株。水分胁迫40d,接种AM真菌显著提高了叶片可溶性糖含量。水分胁迫80d,接种株叶片SOD活性显著增加。菌根依赖性随水分胁迫程度增加而提高。沙打旺根际土著菌接种效果优于摩西球囊霉。水分胁迫和AM真菌的交互作用对分枝数、菌根侵染率、叶片SOD、CAT和POD活性、叶绿素、脯氨酸、可溶性蛋白、地上部全N和全P、地下部全N和根系活力有极显著影响,对叶片丙二醛和地下部全P有显著影响。AM真菌促进根系对土壤水分和矿质营养的吸收,改善植物生理代谢活动,从而提高沙打旺抗旱性,促进其生长。试验结果为筛选优良抗旱菌种,充分利用AM真菌资源促进荒漠植物生长和植被恢复提供了依据。  相似文献   

18.
Common mycorrhizal networks (CMNs) that connect individual plants of the same or different species together play important roles in nutrient and signal transportation, and plant community organization. However, about 10% of land plants are non-mycorrhizal species with roots that do not form any well-recognized types of mycorrhizas; and each mycorrhizal fungus can only colonize a limited number of plant species, resulting in numerous non-host plants that could not establish typical mycorrhizal symbiosis with a specific mycorrhizal fungus. If and how non-mycorrhizal or non-host plants are able to involve in CMNs remains unclear. Here we summarize studies focusing on mycorrhizal-mediated host and non-host plant interaction. Evidence has showed that some host-supported both arbuscular mycorrhizal (AM) and ectomycorrhizal (EM) hyphae can access to non-host plant roots without forming typical mycorrhizal structures, while such non-typical mycorrhizal colonization often inhibits the growth but enhances the induced system resistance of non-host plants. Meanwhile, the host growth is also differentially affected, depending on plant and fungi species. Molecular analyses suggested that the AMF colonization to non-hosts is different from pathogenic and endophytic fungi colonization, and the hyphae in non-host roots may be alive and have some unknown functions. Thus we propose that non-host plants are also important CMNs players. Using non-mycorrhizal model species Arabidopsis, tripartite culture system and new technologies such as nanoscale secondary ion mass spectrometry and multi-omics, to study nutrient and signal transportation between host and non-host plants via CMNs may provide new insights into the mechanisms underlying benefits of intercropping and agro-forestry systems, as well as plant community establishment and stability.  相似文献   

19.
Mycorrhiza in sedges—an overview   总被引:12,自引:0,他引:12  
Most terrestrial plants associate with root-colonising mycorrhizal fungi, which improve the fitness of both the fungal and plant associates. However, exceptions exist both between and within plant families failing to associate with mycorrhizal fungi or in the incidence and the extent of mycotrophy, which may vary greatly. Sedges are important pioneers of disturbed habitats and often dominate vegetations like wetlands, and arctic and alpine vegetations, in which the mycorrhizal inoculum in the soil is often low or absent. In the past, sedges were often designated as non-mycorrhizal, though limited reports indicated the presence of mycorrhiza in certain species. However, studies since 1987 indicate widespread occurrence of mycorrhiza in sedges. Based on these studies, the family Cyperaceae is no longer a non-mycorrhizal family, but the mycorrhizal status of its members is greatly influenced by environmental conditions. Further, sedges appear to have several morphological adaptations to thrive in the absence of mycorrhizal association. Though mycorrhizal associations have been noted in many sedge species, the ecological role of this association is not well documented and no clear generalisation can be drawn. Similarly, the role of mycorrhizal fungi on sedge growth and nutrient uptake or non-nutritional benefits has yet to be fully ascertained. This paper reviews the current information available on the incidence of mycorrhiza in sedges and the possible reasons for low mycotrophy observed in this family.  相似文献   

20.
N. Allsopp  W. D. Stock 《Oecologia》1992,91(2):281-287
Summary The interaction of density and mycorrhizal effects on the growth, mineral nutrition and size distribution of seedlings of two perennial members of the Fabaceae was investigated in pot culture. Seedlings of Otholobium hirtum and Aspalathus linearis were grown at densities of 1, 4, 8 and 16 plants per 13-cm pot with or without vesicular-arbuscular (VA) mycorrhizal inoculum for 120 days. Plant mass, relative growth rates, height and leaf number all decreased with increasing plant density. This was ascribed to the decreasing availability of phosphorus per plant as density increased. O. hirtum was highly dependent on mycorrhizas for P uptake but both mycorrhizal and non-mycorrhizal A. linearis seedlings were able to extract soil P with equal ease. Plant size distribution as measured by the coefficient of variation (CV) of shoot mass was greater at higher densities. CVs of mycorrhizal O. hirtum plants were higher than those of non-mycorrhizal plants. CVs of the facultatively mycorrhizal A. linearis were similar for both mycorrhizal and non-mycorrhizal plants. Higher CVs are attributed to resource preemption by larger individuals. Individuals in populations with high CVs will probably survive stress which would result in the extinction of populations with low CVs. Mass of mycorrhizal plants of both species decreased more rapidly with increasing density than did non-mycorrhizal plant mass. It is concluded that the cost of being mycorrhizal increases as plant density increases, while the benefit decreases. The results suggest that mycorrhizas will influence density-dependent population processes of faculative and obligate mycorrhizal species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号