首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nocturnal drift of mayfly nymphs as a post-contact antipredator mechanism   总被引:3,自引:0,他引:3  
1. The predominantly nocturnal constrained drift of stream invertebrates is commonly regarded as a behaviour that avoids encounters with visually foraging fish in the water column. The alternative explanation, that drift peaks are caused by bottom-feeding, nocturnal predators, has rarely been tested.
2. We examined these hypotheses by collecting invertebrate drift in five streams in northern Finland: one with brown trout ( Salmo trutta , a drift-feeding fish), one with alpine bullhead ( Cottus poecilopus , a benthic fish), one with both species, and two fishless streams.
3. Drift by Baetis mayflies was aperiodic or slightly diurnal in both fishless streams on all sampling occasions. In contrast, drift was nocturnal in streams with trout and, to a lesser extent, in the stream with bullhead. Non-dipteran prey drifted mainly nocturnally in all streams with fish, whereas Diptera larvae were less responsive to the presence of fish.
4. In laboratory experiments, bullheads were night-active, causing a much higher frequency of drift by touching Baetis at night than during the day. Thus, increased nocturnal drift may serve to avoid both visual predators (a pre-contact response) and benthic fish (a post-contact response). In streams with bottom-feeding fish, nocturnal drift should be caused by increased drift by night rather than by reduced drift by day.  相似文献   

2.
Animal population dynamics in open systems are affected not only by agents of mortality and the influence of species interactions on behavior and life histories, but also by dispersal and recruitment. We used an extensive data set to compare natural loss rates of two mayfly species that co-occur in high-elevation streams varying in predation risk, and experience different abiotic conditions during larval development. Our goals were to generate hypotheses relating predation to variation in prey population dynamics and to evaluate alternative mechanisms to explain such variation. While neither loss rates nor abundance of the species that develops during snowmelt (Baetis bicaudatus) varied systematically with fish, loss rates of the species that develops during baseflow (Baetis B) were higher in streams containing brook trout than streams without fish; and surprisingly, larvae of this species were most abundant in trout streams. This counter-intuitive pattern could not be explained by a trophic cascade, because densities of intermediate predators (stoneflies) did not differ between fish and fishless streams and predation by trout on stoneflies was negligible. A statistical model estimated that higher recruitment and accelerated development enables Baetis B to maintain larger populations in trout streams despite higher mortality from predation. Experimental estimates suggested that predation by trout potentially accounts for natural losses of Baetis B, but not Baetis bicaudatus. Predation by stoneflies on Baetis is negligible in fish streams, but could make an important contribution to observed losses of both species in fishless streams. Non-predatory sources of loss were higher for B. bicaudatus in trout streams, and for Baetis B in fishless streams. We conclude that predation alone cannot explain variation in population dynamics of either species; and the relative importance of predation is species- and environment-specific compared to non-predatory losses, such as other agents of mortality and non-consumptive effects of predators. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

3.
Fitness and community consequences of avoiding multiple predators   总被引:6,自引:0,他引:6  
We investigated the fitness and community consequences of behavioural interactions with multiple predators in a four-trophic-level system. We conducted an experiment in oval flow-through artificial-stream tanks to examine the single and interactive sublethal effects of brook trout and stoneflies on the size at emergence of Baetis bicaudatus (Ephemeroptera: Baetidae), and the cascading trophic effects on algal biomass, the food resource of the mayflies. No predation was allowed in the experiment, so that all effects were mediated through predator modifications of prey behaviour. We reared trout stream Baetis larvae from just before egg development until emergence in tanks with four treatments: (1) water from a holding tank with two brook trout (trout odour), (2) no trout odour + eight stoneflies with glued mouthparts, (3) trout odour + stoneflies and (4) no trout odour or stoneflies. We ended the experiment after 3 weeks when ten male and ten female subimagos had emerged from each tank, measured the size of ten male and ten female mature nymphs (with black wing pads), and collected algal samples from rocks at six locations in each tank. To determine the mechanism responsible for sublethal and cascading effects on lower trophic levels we made day and night observations of mayfly behaviour for the first 6 days by counting mayflies drifting in the water column and visible on natural substrata in the artificial streams. Trout odour and stoneflies similarly reduced the size of male and female Baetis emerging from artificial streams, with non-additive effects of both predators. While smaller females are less fecund, a fitness cost of small male size has not been determined. The mechanism causing sublethal effects on Baetis differed between predators. While trout stream Baetis retained their nocturnal periodicity in all treatments, stoneflies increased drift dispersal of mayflies at night, and trout suppressed night-time feeding and drift of mayflies. Stoneflies had less effect on Baetis behaviour when fish odour was present. Thus, we attribute the non-additivity of effects of fish and stoneflies on mayfly growth to an interaction modification whereby trout odour reduced the impact of stoneflies on Baetis behaviour. Since stonefly activity was also reduced in the presence of fish odour, this modification may be attributed to the effect of fish odour on stonefly behaviour. Only stoneflies delayed Baetis emergence, suggesting that stoneflies had a greater sublethal effect on Baetis fitness than did trout. Delayed emergence may reduce Baetis fitness by increasing risks of predation and parasitism on larvae, and increasing competition for mates or oviposition sites among adults. Finally, algal biomass was higher in tanks with both predators than in the other three treatments. These data implicate a behavioural trophic cascade because predators were not allowed to consume prey. Therefore, differences in algal biomass were attributed to predator-induced changes in mayfly behaviour. Our study demonstrates the importance of considering multiple predators when measuring direct sublethal effects of predators on prey fitness and indirect effects on lower trophic levels. Identification of an interaction modification illustrates the value of obtaining detailed information on behavioural mechanisms as an aid to understanding the complex interactions occurring among components of ecological communities. Received: 20 March 1997 / Accepted: 29 September 1997  相似文献   

4.
Cascading effects of predators can affect ecosystem properties by changing plant biomass, distribution and assemblage composition. Using data from field surveys and whole‐stream experiments we tested the hypothesis that predatory trout change assemblage composition of benthic algae in high‐elevation streams mediated by grazer behavior. Field surveys revealed that the taxonomic composition of algal assemblages differed significantly between streams that contained trout and those that were fishless; but comparisons of palatable versus unpalatable algal taxa between fish and fishless streams were equivocal because of high natural variability. Therefore, we tested for a behavioral (non‐consumptive) trophic cascade experimentally by adding brook trout chemical cues to six naturally fishless streams for 25 days and compared responses of grazers and algae to six reference streams without fish cues added. Algal response variables included rates of change in the abundance of three physiognomic categories, from most palatable (attached erect and prostrate diatoms) to least palatable (non‐diatoms), as determined from food selectivity analyses of the most common grazers (mayflies and caddisflies). Fish cues did not affect the mean densities or changes in densities of total grazers or any individual grazer species. However, in streams where fish cues were added, rates of accrual of attached erect diatoms, which was the preferred algal type for the grazer most vulnerable to trout predation (Baetis), were higher and their densities increased significantly faster with increasing densities of this grazer species than in reference streams. Results of his experiment support the hypothesis that predator induced suppression of grazer foraging behavior, rather than cascading effects of top predators on grazer density, may contribute to variation in the composition of algal assemblages among streams by allowing proliferation of most palatable algal species.  相似文献   

5.
Animal daily routines represent a compromise between maximizing foraging success and optimizing physiological performance, while minimizing the risk of predation. For ectothermic predators, ambient temperature may also influence daily routines through its effects on physiological performance. Temperatures can fluctuate significantly over the diel cycle and ectotherms may synchronize behaviour to match thermal regimes in order to optimize fitness. We used bio-logging to quantify activity and body temperature of blacktip reef sharks (Carcharhinus melanopterus) at a tropical atoll. Behavioural observations were used to concurrently measure bite rates in herbivorous reef fishes, as an index of activity for potential diurnal prey. Sharks showed early evening peaks in activity, particularly during ebbing high tides, while body temperatures peaked several hours prior to the period of maximal activity. Herbivores also displayed peaks in activity several hours earlier than the peaks in shark activity. Sharks appeared to be least active while their body temperatures were highest and most active while temperatures were cooling, although we hypothesize that due to thermal inertia they were still warmer than their smaller prey during this period. Sharks may be most active during early evening periods as they have a sensory advantage under low light conditions and/or a thermal advantage over cooler prey. Sharks swam into shallow water during daytime low tide periods potentially to warm up and increase rates of digestion before the nocturnal activity period, which may be a strategy to maximize ingestion rates. “Hunt warm, rest warmer” may help explain the early evening activity seen in other ectothermic predators.  相似文献   

6.
Theory concerning the timing of lotic invertebrate drift suggests that daytime-feeding fish cause invertebrates to restrict their drift behavior to the nighttime. However, there is growing evidence that the nighttime foraging of invertebrate predators also contributes to the nocturnal timing of drift, though it is unclear whether the nocturnal behavior of invertebrate predators is innate or proximately caused by fish. In two experiments, one conducted in a fish-bearing stream and a second in a fishless stream, we compared the drift patterns of Baetidae (Ephemeroptera) from channels with and without benthic invertebrate predators. We tested whether invertebrate predators affect the timing of drift, either as a proximate cause of nocturnal drift in the fishless stream (diel periodicity) or as a proximate cause of a pre-dawn peak in drift in the fish-bearing stream (nocturnal periodicity). In the fish-bearing stream experiment, a pre-dawn increase of baetid drift occurred independently of invertebrate predators, indicating that invertebrate predators were not the proximate cause of nocturnal periodicity in the stream. In the fishless stream experiment, invertebrate predators caused more baetid drift at night than during the day, indicating that invertebrate predators caused the nocturnal drift pattern we observed in the stream, and that invertebrate predators can influence drift timing independently of fish. Therefore, we suggest that both visually feeding fish and nocturnally foraging benthic predators, when present, affect the timing of invertebrate drift; visually feeding fish by reducing daytime drift, and benthic predators by increasing nighttime drift.  相似文献   

7.
1. A knowledge of how individual behaviour affects populations in nature is needed to understand many ecologically important processes, such as the dispersal of larval insects in streams. The influence of chemical cues from drift‐feeding fish on the drift dispersal of mayflies has been documented in small experimental channels (i.e. < 3 m), but their influence on dispersal in natural systems (e.g. 30 m stream reaches) is unclear. 2. Using surveys in 10 Rocky Mountain streams in Western Colorado we examined whether the effects of predatory brook trout (Salvelinus fontinalis) on mayfly drift, that were apparent in stream‐side channels, could also be detected in natural streams. 3. In channel experiments, the drift of Baetis bicaudatus (Baetidae) was more responsive to variation in the concentration of chemical cues from brook trout than that of another mayfly, Epeorus deceptivus (Heptageniidae). The rate of brook trout predation on drifting mayflies of both species in a 2‐m long observation tank was higher during the day (60–75%) but still measurable at night (5–10%). Epeorus individuals released into the water column were more vulnerable to trout predation by both day and night than were Baetis larvae treated similarly. 4. Drift of all mayfly taxa in five fishless streams was aperiodic, whereas their drift was nocturnal in five trout streams. The propensity of mayflies to drift was decreased during the day and increased during the night in trout streams compared with fishless streams. In contrast to the channel experiments, fish biomass and density did not alter the nocturnal nature nor magnitude of mayfly drift in natural streams. 5. In combination, these results indicate that mayflies respond to subtle differences in concentration of fish cues in experimental channels. However, temporal and spatial variation in fish cues available to mayflies in natural streams may have obscured our ability to detect responses at larger scales.  相似文献   

8.
1. Conspecific populations living in habitats with different risks of predation often show phenotypic variation in defensive traits. Traits of two species of mayflies (Baetidae: Baetis bicaudatus and Baetis sp. nov.) differ between populations living in fish and fishless streams in a high altitude drainage basin in western Colorado, U.S.A. We tested for genetic differentiation between mayfly populations in these two habitat types, assuming that lack of genetic differentiation would be consistent with the hypothesis that those traits are phenotypically plastic. 2. Previous work has shown that larvae of both species behave differently and undergo different developmental pathways in adjacent fish and fishless streams. These phenotypic differences in behaviour and development have been induced experimentally, suggesting that populations from fishless streams have the genetic capability to respond to fish. 3. During summer 2001 we collected Baetis larvae from several fish and fishless streams, and from fish and fishless sections of the same streams. We used allozymes and a fragment of the cytochrome oxidase subunit 1 mitochondrial gene to examine genetic variation of Baetis individuals within and among streams. 4. Results showed that genetic variation exists among populations of the same species of Baetis from different streams, but none of that variation was associated with the presence or absence of fish. These data confirm that populations of Baetis living in fish and fishless streams are not genetically distinct, and are consistent with the hypothesis that traits associated with environments of different risk are phenotypically plastic.  相似文献   

9.
10.
We studied antipredatory responses of lotic mayfly (Baetis) nymphs in a factorial experiment with four levels of fish presence: (1) a freely foraging fish (the European minnow,Phoxinus phoxinus), (2) a constrained fish, (3) water from a fish stream, (4) water from a fishless stream. LargeBaetis nymphs drifted mainly during night-time in treatments involving either the chemical or actual presence of fish, whereas no diel periodicity was observed when the water was not conditioned with fish odour. The response was strongest when the fish was uncaged, which suggests that visual or hydrodynamic cues are needed in addition to chemical ones for an accurate assessment of predation risk. Fish presence had no effect on the drift rates of small nymphs. Instead, they increased their refuge use in the presence of a live fish. Chemical cues alone did not have any effect on the refuge use of any of theBaetis size classes. Our results indicate active drift entry by mayfly nymphs. Because predation pressure is spatially and temporally variable, nymphs must sample the environment in order to locate predator-free areas or areas with low predation risk. Drifting should be the most energy-saving way to do this. To avoid the risk from visually feeding fish, large individuals can sample safely (i.e. enter drift) only at night-time, while the small ones can also do this safely during the day. We suggest that, contrary to some earlier assumptions, mayfly drift is not a fixed prey response. Instead,Baetis nymphs are able to assess the prevailing predation pressure, and they adjust their foraging behaviour accordingly.  相似文献   

11.
Some benthic invertebrates in streams make frequent, short journeys downstream in the water column (=drifting). In most streams there are larger numbers of invertebrates in the drift at night than during the day. We tested the hypothesis that nocturnal drifting is a response to avoid predation from fish that feed in the water column during the day. We surveyed diel patterns of drifting by nymphs of the mayfly Baetis coelestis in several streams containing (n=5) and lacking (n=7) populations of rainbow trout, Oncorhynchus mykiss. Drifting was more nocturnal in the presence of trout (85% of daily drift occurred at night) than in their absence (50% of daily drift occurred at night). This shift in periodicity is due to reduced daytime drifting in streams with trout, because at a given nighttime drift density, the daytime drift density of B. coelestis was lower in streams occupied by trout than in troutless streams. Large size classes of B. coelestis were underrepresented in the daytime drift in trout streams compared to nighttime drift in trout streams, and to both day and night drift in troutless streams. Differences in daytime drift density between streams with and without trout were the result of differences in mayfly drift behaviour among streams because predation rates by trout were too low to significantly reduce densities of drifting B. coelestis. We tested for rapid (over 3 days) phenotypic responses to trout presence by adding trout in cages to three of the troutless streams. Nighttime drifting was unaffected by the addition of trout, but daytime drift densities were reduced by 28% below cages containing trout relative to control cages (lacking trout) placed upstream. Drift responses were measured 15 m downstream of the cages suggesting that mayflies detected trout using chemical cues. Overall, these data support the hypothesis that infrequent daytime drifting is an avoidance response to fish that feed in the water column during the day. Avoidance is more pronounced in large individuals and is, at least partially, a phenotypic response mediated by chemical cues.  相似文献   

12.
Growth and maximum size of stream fishes can be highly variable across populations. For salmonid fishes in streams, individuals from populations confined to headwater streams often exhibit small size at maturity in comparison to populations with access to main-stem rivers. Differences in prey size, prey availability, and metabolic constraints based on temperature may explain patterns of maximum size and growth. In this study, cutthroat trout from headwater stream populations that were isolated above a waterfall were compared to individuals from populations in similar sized streams without a movement barrier and from large main-stem rivers. Cutthroat trout from smaller streams with or without a movement barrier were significantly smaller at a given age than fish from main-stem rivers, where individuals were able to achieve a much larger maximum size. Comparisons of invertebrate drift abundance and size in the three types of streams revealed that drift size did not differ between stream categories, but was highest per volume of water in large main-stem rivers. Across all stream types, prey abundance declined from summer to fall. Temperature declined over the course of the season in a similar manner across all stream types, but remained relatively high later in the season in main-stem river habitats. Prey availability and temperature conditions in main-stem rivers may provide more optimal growing conditions for fish as individuals increase in size and become constrained by prey availability and temperature conditions in small streams. Maintaining connectivity between small spawning and rearing tributary streams and main-stem river habitats may be critical in maintaining large-bodied populations of stream salmonids.  相似文献   

13.
Jonas Dahl 《Oecologia》1998,117(1-2):217-226
I assessed the impact of both vertebrate and invertebrate predators on a lotic benthic community in a 1-month-long experiment, using enclosures containing cobble/gravel bottoms, with large-mesh netting that allowed invertebrates to drift freely. Brown trout (Salmo trutta) and leeches (Erpobdella octoculata) were used as predators and four treatments were tested: a predator-free control, leeches only, trout only, and leeches and trout together. A density of 26.7 leeches/m2 (20 leeches/enclosure) and 1.3 trout/m2 (one trout per enclosure) was stocked into the enclosures. The total biomass of invertebrate prey was significantly lower in the trout and trout plus leech treatments than in the leech and control treatments, which were due to strong negative effects of trout on Gammarus. On the individual prey taxon level, both trout and leeches affected the abundance of Asellus , Baetis and Ephemerella, whereas the abundance of Gammarus was only affected by trout, and the abundance of Orthocladiinae and Limnephilidae was only affected by leeches. In the treatment with trout and leeches together, the abundance of Ephemerella and Baetis was higher than when trout or leeches were alone, which was probably due to predator interactions. Leeches and trout had no effects on prey immigration but did affect per capita emigration rates. Both trout and leeches indirectly increased periphyton biomass in enclosures, probably due to their strong effects on grazers. Both trout and leeches were size-selective predators, with trout selecting large prey, and leeches selecting small prey. Size-selective predation by trout and leeches affected the size structure of five commonly consumed prey taxa. Trout produced prey populations of small sizes owing to consumption of large prey as well as increased emigration out of enclosures by these large prey. Leech predation produced prey assemblages of larger size owing to consumption and increased emigration of small prey. These results suggest that in lotic habits, predatory invertebrates can be as strong interactors as vertebrate predators. Received: 23 June 1997 / Accepted: 4 May 1998  相似文献   

14.
1. Non‐native trout have been stocked in streams and lakes worldwide largely without knowledge of the consequences for native ecosystems. Although trout have been introduced widely throughout the Sierra Nevada of California, U.S.A., fishless streams and their communities of native invertebrates persist in some high elevation areas, providing an opportunity to study the effects of trout introductions on natural fishless stream communities. 2. We compared algal biomass and cover, organic matter levels and invertebrate assemblages in 21 natural fishless headwater streams with 21 paired nearby streams containing stocked trout in Yosemite National Park. 3. Although environmental conditions and particulate organic matter levels did not differ between the fishless and trout streams, algal biomass (as chlorophyll a concentration) and macroalgal cover were, on average, approximately two times and five times higher, respectively, in streams containing trout. 4. There were no differences in the overall densities of invertebrates in fishless versus paired trout streams; however, invertebrate richness (after rarefaction), evenness, and Simpson and Shannon diversities were 10–20% higher in fishless than in trout streams. 5. The densities of invertebrates belonging to the scraper‐algivore and predator functional feeding guilds were higher, and those for the collector‐gatherer guild lower, in fishless than trout streams, but there was considerable variation in the effects of trout on specific taxa within functional feeding groups. 6. We found that the densities of 10 of 50 common native invertebrate taxa (found in more than half of the stream pairs) were reduced in trout compared to fishless streams. A similar number of rarer taxa also were absent or less abundant in the presence of trout. Many of the taxa that declined with trout were conspicuous forms (by size and behaviour) whose native habitats are primarily high elevation montane streams above the original range of trout. 7. Only a few taxa increased in the presence of trout, possibly benefiting from reductions in their competitors and predators by trout predation. 8. These field studies provide catchment‐scale evidence showing the selective influence of introduced trout on stream invertebrate and algal communities. Removal of trout from targeted headwater streams may promote the recovery of native taxa, community structure and trophic organisation.  相似文献   

15.
1. Knowledge of the influence of predatory fish in detritus‐based stream food webs is poor. We tested whether larval abundance of the New Zealand leaf‐shredding caddisfly, Zelandopsyche ingens (family Oeconesidae), was affected by the presence of predatory brown trout, Salmo trutta and the abundance of their primary detrital resource (Nothofagus leaves). 2. The density of Z. ingens and the biomass of leaves were determined in seven fishless streams and four trout streams in the Cass region, central South Island, on four occasions spanning 5 years. 3. Physicochemical conditions were similar in trout and fishless streams, but ancova indicated that Z. ingens numbers were positively related to leaf biomass and that caddisfly numbers were significantly greater in fishless streams than trout streams for any given biomass of leaf. The cases of trout stream larvae were also heavier per unit length than those in fishless streams. 4. Our results provide evidence for both top‐down and bottom‐up influences on a detritus‐based stream food web. Although stream detritivores may benefit from a habitat that provides both food and a degree of protection from predators, top‐down effects of predators on detritivore population abundance were still important. Thus, detrital resource availability may determine maximum attainable population size, whereas predation is likely to reduce the population to a level below that.  相似文献   

16.
  1. Increased turbidity and siltation caused by rock quarrying, mining, and deforestation are pervasive disturbances in aquatic systems. Turbidity interferes with vision for aquatic organisms, potentially altering predator–prey interactions.
  2. We studied the effects of these disturbances in Trinidadian streams by surveying predators and their shared prey both in streams with versus without quarries as well as in a focal stream before and after the establishment of a quarry. Then, to evaluate whether differential foraging success in turbid water might underlie abundance patterns of predators, we experimentally induced turbidity in mesocosms and measured predator foraging success.
  3. Upstream quarry presence had a dramatic effect on the benthic structure of streams, greatly increasing siltation. A substantial decrease in the abundance of a diurnal cichlid predator (Crenicichla frenata) was associated with quarry presence, while a nocturnal erytherinid predator (Hoplias malabaricus) was equally as abundant in streams with or without quarries. The density of their shared prey, the Trinidadian guppy (Poecilia reticulata) remained unchanged.
  4. In mesocosm trials, Crenicichla were less successful predators with turbidity, whereas Hoplias performed equally across turbidities. These foraging success results help explain differences in demographic shifts in response to turbidity for both predators.
  5. By relating short-term effects of an anthropogenically altered visual environment on species interactions to abundance patterns of predators and prey, this study helps to identify an important mechanism whereby changes to species’ visual ecology may have long-term effects on population biology.
  相似文献   

17.
Coldwater fishes in streams, such as brook trout (Salvelinus fontinalis), typically are headwater specialists that occasionally expand distributions downstream to larger water bodies. It is unclear, however, whether larger streams function simply as dispersal corridors connecting headwater subpopulations, or as critical foraging habitat needed to sustain large mobile brook trout. Stable isotopes (δ13C and δ15N) and a hierarchical Bayesian mixing model analysis was used to identify brook trout that foraged in main stem versus headwater streams of the Shavers Fork watershed, West Virginia. Headwater subpopulations were composed of headwater and to a lesser extent main stem foraging individuals. However, there was a strong relationship between brook trout size and main stem prey contributions. The average brook trout foraging on headwater prey were limited to 126 mm standard length. This size was identified by mixing models as a point where productivity support switched from headwater to main stem dependency. These results, similar to other studies conducted in this watershed, support the hypothesis that productive main stem habitat maintain large brook trout and potentially facilitates dispersal among headwater subpopulations. Consequently, loss of supplementary main stem foraging habitats may explain loss of large, mobile fish and subsequent isolation of headwater subpopulations in other central Appalachian watersheds.  相似文献   

18.
1. Ecologists have struggled to describe general patterns in the impacts of predators on stream prey, particularly at large, realistic spatial and temporal scales. Among the confounding variables in many systems is the presence of multiple predators whose interactions can be complex and unpredictable. 2. We studied the interactions between brook trout (Salvelinus fontinalis) and larval two‐lined salamanders (Eurycea bislineata), two dominant vertebrate predators in New England stream systems, by examining patterns of two‐lined salamander abundance in stream reaches above and below waterfalls that are barriers to fish dispersal, by measuring the effects of trout on salamander density and activity using a large‐scale manipulation of brook trout presence, and by conducting a small‐scale laboratory experiment to study how brook trout and larval two‐lined salamanders affect each other's prey consumption. 3. We captured more salamanders above waterfalls, in the absence of trout, than below waterfalls where trout were present. Salamander density and daytime activity decreased following trout addition to streams, and salamander activity shifted from aperiodic to more nocturnal with fish. Analysis of stomach contents from our laboratory experiment revealed that salamanders eat fewer prey with trout, but trout eat more prey in the presence of salamanders. 4. We suggest that as predators in streams, salamanders can influence invertebrate prey communities both directly and through density‐ and trait‐mediated interactions with other predators.  相似文献   

19.
1. In streams, mayflies (Order Ephemeroptera) are at risk from fish feeding visually in the water column. The effect of fish odour on the behaviour of Baetis bicaudatus from a fishless stream and a trout stream was investigated in four large oval tanks supplied with water from the fishless stream.
2. For each mayfly population, mayfly positioning on the substratum and movement in the water column (drift) were measured during the day and night, over 3 days. Brook trout ( Salvelinus fontinalis ) odour was added to two tanks to test the effect of a threat from fish.
3. Throughout the experiment more mayflies from the trout stream were observed on the substratum surface and in the water column during the night than the day, but the magnitude of night drift was less in tanks with fish odour.
4. Baetis from the fishless stream also displayed a nocturnal periodicity in drift and positioning, but their night-time drift was not affected by the presence of fish odour. On the first day of the experiment, however, more mayflies were observed on the substratum surface and drifting in tanks without fish odour during the day.
5. Sensitivity to fish odour may enable mayflies to alter their behaviour according to the risk of predation from fish.  相似文献   

20.
1. In streams, mayflies (Order Ephemeroptera) are at risk from fish feeding visually in the water column. The effect of fish odour on the behaviour of Baetis bicaudatus from a fishless stream and a trout stream was investigated in four large oval tanks supplied with water from the fishless stream.
2. For each mayfly population, mayfly positioning on the substratum and movement in the water column (drift) were measured during the day and night, over 3 days. Brook trout ( Salvelinus fontinalis ) odour was added to two tanks to test the effect of a threat from fish.
3. Throughout the experiment more mayflies from the trout stream were observed on the substratum surface and in the water column during the night than the day, but the magnitude of night drift was less in tanks with fish odour.
4. Baetis from the fishless stream also displayed a nocturnal periodicity in drift and positioning, but their night-time drift was not affected by the presence of fish odour. On the first day of the experiment, however, more mayflies were observed on the substratum surface and drifting in tanks without fish odour during the day.
5. Sensitivity to fish odour may enable mayflies to alter their behaviour according to the risk of predation from fish.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号