首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We report here the results of an experimental study designed to compare algal responses to short-term manipulations of zooplankton in three California lakes which encompass a broad range of productivity (ultra-oligotrophic Lake Tahoe, mesotrophic Castle Lake, and strongly eutrophic Clear Lake). To assess the potential strength of grazing in each lake, we evaluated algal responses to a 16-fold range of zooplankton biomass. To better compare algal responses among lakes, we determined algal responses to grazing by a common grazer (Daphnia sp.) over a range ofDaphnia densities from 1 to 16 animals per liter. Effects of both ambient grazers andDaphnia were strong in Castle Lake. However, neither ambient zooplankton norDaphnia had much impact on phytoplankton in Clear Lake. In Lake Tahoe, no grazing impacts could be demonstrated for the ambient zooplankton butDaphnia grazing had dramatic effects. These results indicate weak coupling between phytoplankton and zooplankton in Clear Lake and Lake Tahoe, two lakes which lie near opposite extremes of lake trophic status for most lakes. These observations, along with work reported by other researchers, suggest that linkages between zooplankton and phytoplankton may be weak in lakes with either extremely low or high productivity. Biomanipulation approaches to recover hypereutrophic lakes which aim only to alter zooplankton size structure may be less effective if algal communities are dominated by large, inedible phytoplankton taxa.  相似文献   

2.
1. Growth and reproduction of Daphnia fed lake seston were measured in two categories of meso‐ to eutrophic lakes differing with respect to terrestrial organic matter influence (humic and clear water lakes). The content of highly unsaturated fatty acids (HUFA), P and N, as well as the taxonomical composition of seston were analysed. 2. Seston HUFA and C : P ratios were similar between lake categories, whereas C : N ratios were lower in the clear water lakes in both spring and summer. Despite the similarity in HUFA and P content of seston, Daphnia growth rate, clutch size and the proportion of gravid females were, respectively, about 1.5, 3 and 6 times higher in the clear water lakes. 3. Differences in growth and reproduction were related to a combination of higher N content and good fatty acid quality of the seston in the clear water lakes. Relatively high biomass of edible algae, such as Rhodomonas sp. and Cryptomonas sp., in the clear water lakes, and differences in water pH likely contributed to the observed differences in Daphnia growth and reproduction between lake categories. Additionally, it is possible that Daphnia was energy limited in the humic lakes despite high particulate organic carbon (POC) concentrations, as the contribution of non‐algal and detrital C to the POC pool was high. 4. Our results suggest that dietary HUFA content has the potential to improve herbivore growth and reproduction if N and P are not limiting. N merits more attention in studies of zooplankton nutrition.  相似文献   

3.
Organisms experience competing selective pressures, which can obscure the mechanisms driving evolution. Daphnia ambigua is found in lakes where a predator, the alewife (Alosa pseudoharengus) either does (anadromous) or does not (landlocked) migrate between marine and freshwater. We previously reported an association between alewife variation and life history evolution in Daphnia. However, differences in alewife migration indirectly influence phytoplankton composition for Daphnia. In ‘anadromous lakes’, Daphnia are present in the spring and experience abundant high-quality green algae. Intense predation by young-of-the-year anadromous alewife quickly eliminates these Daphnia populations by early summer. Daphnia from ‘landlocked lakes’ and lakes without alewife (‘no alewife lakes’) are present during the spring and summer and are more likely to experience high concentrations of sub-optimal cyanobacteria during the summer. To explore links between predation, resources, and prey evolution, we reared third-generation laboratory-born Daphnia from all lake types on increasing cyanobacteria concentrations. We observed several significant ‘lake type × resource’ interactions whereby the differences among lake types depended upon cyanobacteria concentrations. Daphnia from anadromous lakes developed faster, were larger at maturation, produced more offspring, and had higher intrinsic rates of increase in the absence of cyanobacteria. Such trends disappeared or reversed as cyanobacteria concentration was increased because Daphnia from anadromous lakes were more strongly influenced by the presence of cyanobacteria. Our results argue that alewife migration and phytoplankton composition both play a role in Daphnia evolution.  相似文献   

4.
The dynamic interactions among nutrients, algae and grazers were tested in a 2 × 3 factorial microcosm experiment that manipulated grazers (Daphnia present or absent) and algal composition (single species cultures and mixtures of an undefended and a digestion-resistant green alga). The experiment was run for 25 days in 10-L carboys under mesotrophic conditions that quickly led to strong phosphorus limitation of algal growth (TP ? 0.5 μM, N:P 40:1). Four-day Daphnia juvenile growth assays tested for Daphnia P-limitation and nutrient-dependent or grazer-induced algal defenses. The maximal algal growth rate of undefended Ankistrodesmus (mean ± SE for three replicate microcosms; 0.92 ± 0.02 day?1) was higher than for defended Oocystis (0.62 ± 0.03 day?1), but by day 6, algal growth was strongly P-limited in all six treatments (molar C:P ratio >900). The P-deficient algae were poor quality resources in all three algal treatments. However, Daphnia population growth, reproduction, and survival were much lower in the digestion-resistant treatment even though growth assays provided evidence for Daphnia P-limitation in only the undefended and mixed treatments. Growth assays provided little or no support for simple threshold element ratio (TER) models that fail to consider algae defenses that result in viable gut passage. Our results show that strong P-limitation of algal growth enhances the defenses of a digestion-resistant alga, favoring high abundance of well-defended algae and energy limitation of zooplankton growth.  相似文献   

5.
The question of nutrients responsible for eutrophication of freshwater lakes is reviewed, and recent additions to the literature on nutrient limitation are discussed. The paper by Lange is criticized on several grounds, including the facts that utilization of HCO3? by phytoplankton and the invasion of lake waters by atmospheric CO2 are ignored as sources of photosynthetic carbon. The phosphorus and nitrogen concentrations used in Lange's experiments are far higher than values published by others for Lakes Erie and Ontario. Preliminary results of fertilizing a small oligotrophic lake with nitrogen and phosphorus are described. The standing crop of phytoplankton increased by 30–50 ×, while the P:N:C ratio in seston did not change from ratios found in unfertilized lakes. Other experiments done in water columns isolated with polyethylene film showed that addition of carbon did not increase the phytoplankton standing crop. Since the fertilized lake was initially lower in total CO2 than any other recorded in the literature, it is concluded that carbon is unlikely to limit the standing crop of phytoplankton in almost any situation. Measurements of invasion of atmospheric gases to the fertilized lake by the Rn222 technique were compared with phytoplankton production measurements, revealing that atmospheric invasion of CO2 is sufficient to support the high phytoplankton standing crop in the epilimnion of the lake. Possible errors in interpretation of culture and bottle-bioassay experiments with respect to eutrophication are discussed.  相似文献   

6.
1. Numerous studies have quantified the relative contribution of terrestrial‐ and phytoplankton‐derived carbon sources to zooplankton secondary production in lakes. However, few investigated the pathways along which allochthonous and autochthonous carbon (C) was actually conveyed to consumers. 2. We suggest that the combined use of fatty acid and stable isotope biomarkers could solve this issue. We conducted a field study on two oligotrophic lakes, in which primary production increased significantly between 2002 and 2004. We used modelling to estimate the contribution of terrestrial‐ and phytoplankton‐derived C to particulate organic C (POC) and zooplankton production from their δ13C values in 2002 and 2004. 3. According to the isotope model, phytoplankton‐derived C accounted for a major part of the POC pool in both lakes and supported more Daphnia sp. production in 2004 than in 2002. Fatty acid data revealed that increased contribution of algal‐C to Daphnia production, although common between both lakes, was achieved through C pathways that were different. In one lake, Daphnia grazed more intensively on phytoplankton, whereas in the other there was greater grazing on bacteria. In the latter case, the increased primary production resulted in greater release of algal‐derived dissolved organic C (DOC), which may have supported extra bacterial and eventually Daphnia, production. 4. This is the first study illustrating that the combination of fatty acid and stable isotope biomarkers could further our understanding of the factors controlling the relative magnitude of food webs pathways conveying organic matter to zooplankton.  相似文献   

7.
The partial pressure of carbon dioxide (pCO2) in lake ecosystems varies over four orders of magnitude and is affected by local and global environmental perturbations associated with both natural and anthropogenic processes. Little is known, however, about how changes in pCO2 extend into the function and structure of food webs in freshwater ecosystems. To fill this gap, we performed laboratory experiments using the ecologically important planktonic herbivore Daphnia and its algal prey under a natural range of pCO2 with low light and phosphorus supplies. The experiment showed that increased pCO2 stimulated algal growth but reduced algal P : C ratio. When feeding on algae grown under high pCO2, herbivore growth decreased regardless of algal abundance. Thus, high CO2‐raised algae were poor food for Daphnia. Short‐term experimental supplementation of PO4 raised the P content of the high CO2‐raised algae and improved Daphnia growth, indicating that low Daphnia growth rates under high pCO2 conditions were due to lowered P content in the algal food. These results suggest that, in freshwater ecosystems with low nutrient supplies, natural processes as well as anthropogenic perturbations resulting in increased pCO2 enhance algal production but reduce energy and mass transfer efficiency to herbivores by decreasing algal nutritional quality.  相似文献   

8.
Iron Constraints on Planktonic Primary Production in Oligotrophic Lakes   总被引:3,自引:0,他引:3  
Phototrophic primary production is a fundamental ecosystem process, and it is ultimately constrained by access to limiting nutrients. Whereas most research on nutrient limitation of lacustrine phytoplankton has focused on phosphorus (P) and nitrogen (N) limitation, there is growing evidence that iron (Fe) limitation may be more common than previously acknowledged. Here we show that P was the nutrient that stimulated phytoplankton primary production most strongly in seven out of nine bioassay experiments with natural lake water from oligotrophic clearwater lakes. However, Fe put constraints on phytoplankton production in eight lakes. In one of these lakes, Fe was the nutrient that stimulated primary production most, and concurrent P and Fe limitation was observed in seven lakes. The effect of Fe addition increased with decreasing lake water concentrations of total phosphorus and dissolved organic matter. Possible mechanisms are low import rates and low bioavailability of Fe in the absence of organic chelators. The experimental results were used to predict the relative strength of Fe, N, and P limitation in 659 oligotrophic clearwater lakes (with total phosphorus ≤ 0.2 μM P and total organic carbon < 6 mg C l−1) from a national lake survey. Fe was predicted to have a positive effect in 88% of these lakes, and to be the nutrient with the strongest effect in 30% of the lakes. In conclusion, Fe, along with P and N, is an important factor constraining primary production in oligotrophic clearwater lakes, which is a common lake-type throughout the northern biomes. This paper is dedicated to the memory of Prof. Peter Blomqvist (deceased 2004).  相似文献   

9.
In laboratory experiments we tested the hypothesis that nutrients supplied by fish and zooplankton affect the structure and dynamics of phytoplankton communities. As expected from their body size differences, fish released nutrients at lower mass-specific rates than Daphnia. On average, these consumers released nutrients at similar N:P ratios, although the ratios released by Daphnia were more variable than those released by fish. Nutrient supply by both fish and Daphnia reduced species richness and diversity of phytoplankton communities and increased algal biomass and dominance. However, nutrient recycling by fish supported a more diverse phytoplankton community than nutrient recycling by Daphnia. We conclude that nutrient recycling by zooplankton and fish have different effects on phytoplankton community structure due to differences in the quality of nutrients released. Received: 21 December 1998 / Accepted: 31 May 1999  相似文献   

10.
The aim of this study was to predict the combined effects of enhanced nitrogen (N) deposition and warming on phytoplankton development in high latitude and mountain lakes. Consequently, we assessed, in a series of enclosure experiments, how lake water nutrient stoichiometry and phytoplankton nutrient limitation varied over the growing season in 11 lakes situated along an altitudinal/climate gradient with low N‐deposition (<1 kg N ha?1 yr?1) in northern subarctic Sweden. Short‐term bioassay experiments with N‐ and P‐additions revealed that phytoplankton in high‐alpine lakes were more prone to P‐limitation, and with decreasing altitude became increasingly N‐ and NP‐colimited. Nutrient limitation was additionally most obvious in midsummer. There was also a strong positive correlation between phytoplankton growth and water temperature in the bioassays. Although excess nutrients were available in spring and autumn, on these occasions growth was likely constrained by low water temperatures. These results imply that enhanced N‐deposition over the Swedish mountain areas will, with the exception of high‐alpine lakes, enhance biomass and drive phytoplankton from N‐ to P‐limitation. However, if not accompanied by warming, N‐input from deposition will stimulate limited phytoplankton growth due to low water temperatures during large parts of the growing season. Direct effects of warming, allowing increased metabolic rates and an extension of the growing season, seem equally crucial to synergistically enhance phytoplankton development in these lakes.  相似文献   

11.
12.
Locke  Andrea  Sprules  W. Gary 《Hydrobiologia》2000,437(1-3):187-196
The effects of pH, algal composition and algal biomass on abundance, size, reproduction and condition of Daphnia pulex and Bosmina longirostris were tested in a field experiment using water and natural phytoplankton assemblages from a circumneutral (pH 6.43) and a moderately acidic (pH 5.75) lake in south-central Ontario. Both species were affected by pH and phytoplankton composition, with decreased egg production, lipid reserves, body size or abundance in treatments containing algae and/or water from the more acidic lake compared to treatments containing water and phytoplankton from the circumneutral lake. This result was unexpected for Bosmina, which often increases in relative and/or absolute abundance in acidified lakes. The negative effect of acidic conditions on Bosmina suggests that the population increase observed in most acidified lakes is not due to a positive response to low pH or ambient phytoplankton, but to altered biotic interactions possibly involving reduced competition.  相似文献   

13.
1. This paper summarizes the salient features of the contributions to the workshop on The Role of Food Quality for Zooplankton. In this paper we attempt critically to evaluate our present knowledge in the light of new studies. 2. For the growth and reproduction of zooplankton, the existing literature considers two main limiting factors in the diet, i.e. phosphorus (homeostasis theory) and fatty acids. Nevertheless, interpretations and opinions regarding the importance of these two factors are the subject of controversy in the literature. No attempts have been made to link these two potentially limiting factors, let alone give a coherent view based on the mechanisms behind limitation. Aquaculture studies provide some direct evidence of the importance of the long-chained poly unsaturated fatty acids (PUFA) for zooplankton. The presence of PUFA in phytoplankton is reported to affect the growth rates of zooplankton significantly. 3. Field data on carbon and phosphorus indicate a greater constancy of the C : P ratios of zooplankton than of their food. Empirical data and modelling studies suggest that zooplankton, especially Daphnia spp., may maintain nutrient homeostasis by incorporating a greater proportion of the limiting nutrients ingested and releasing more of nutrients in excess supply. The need for conserving nutrients in short supply increases with the increase in growth rates. 4. Phosphorus certainly influences zooplankton food directly. Direct supplementation of the P-insufficient algal diet with PO4-P alone discernibly improves the growth in daphnids. It is highly plausible that P limitation and fatty acid limitation are not mutually exclusive alternatives. The two, separately or in conjunction, can control growth of at least some lake zooplankters, especially daphnids. 5. Besides a shortage of nutrient (P), other environmental factors (irradiance, UV-radiation, temperature) can also adversely affect the zooplankton diet, including its digestibility and assimilation efficiency. 6. It is not yet clear if PUFA deficiency in the diet is in some way related to or caused by P deficiency. It is, however, now known that the EPA (eicosapentaenoic acid, 20 : 5ω3) content of certain algae is markedly reduced under P-limitation and that it differs significantly among the different taxonomic groups of phytoplankton. Diatoms and flagellates are generally considered as good-quality foods because of their high EPA content. On the contrary, cyanobacteria are low-quality food, having both low EPA and P content. 7. Recent experiments reveal that the relative importance of fatty acids for daphnids increases with a decreasing C : P ratio in the food, i.e. if P is no longer limiting, and vice versa. For daphnids, there is possibly a switch between P-limitation and PUFA limitation at intermediate C : P ratios. At higher C : P ratios, P is more important but at lower ratios PUFA are more crucial for growth and reproduction. 8. Lastly, the accumulating evidence for P limitation is stronger than that for fatty acid limitation.  相似文献   

14.
15.
The factors influencing the seasonal dynamics of Daphnia in a thermally stratified lake (Esthwaite Water) are described and related to long-term changes in the weather. The Daphnia produced three cohorts in the year and the strength of the cohorts was determined by year-to-year variations in the physical characteristics of the lake and the abundance of edible algae. Food was most abundant in early summer when small, fast-growing flagellates were particularly common. In late summer, the phytoplankton community was dominated by large, inedible species but edible forms re-appeared when nutrients were entrained by wind mixing. Examples are presented to demonstrate the effect that year-to-year variations in the weather have on the growth of the phytoplankton and the dynamics of the Daphnia. In ‘good’ years, when the lake stratifies early and there are periods of episodic mixing in summer, there are two ‘pulses’ of edible algae and two strong cohorts of Daphnia. In ‘bad’ years when stratification is delayed and there is little episodic mixing, the growth of the edible algae is suppressed and the Daphnia produce two weak cohorts. The results are discussed in relation to the impact of intermediate disturbances on growth of phytoplankton and current theories of population regulation in Daphnia. The evidence suggests that the dynamics of the Daphnia in the lake are strongly influenced by seasonal variations in the mixing regime, the recycling of nutrients and the episodic growth of edible algae.  相似文献   

16.
Cyclic parthenogenesis (heterogony) is a widespread reproductive mode found in diverse taxa such as digenean trematodes, gall wasps, gall midges, aphids, cladocerans and rotifers. It is of particular interest as it combines the advantages of asexual reproduction (rapid population growth) and sexual reproduction (recombination). Usually sexual reproduction is initiated when, or slightly before, environmental conditions deteriorate, and often results in the production of resting stages. The optimal timing of diapause induction must thus be under strong natural selection. Using the cladoceran Daphnia as a model system, we show here for the first time that the switch from parthenogenetic to sexual reproduction in a cyclical parthenogenetic organism can be influenced by the chemical composition of food. Under crowding conditions Daphnia reproduced parthenogenetically with subitaneous eggs when fed the algal species Cryptomonas sp., but started the production of resting eggs when fed with the green algal species Scenedesmus obliquus. Supplementation experiments with lipids and especially proteins showed that the induction of resting egg production in two clones of different Daphnia species was due to a dietary deficiency in the green alga. Hence, the low food quality induced a switch in the reproductive mode that may contribute to optimal timing of the sexual reproduction of Daphnia in nature. Furthermore, our results have two other major implications: first, they suggest that protein compounds should be added to the list of diet constituents potentially limiting or influencing Daphnia reproduction. Second, we show that the role of food quality goes far beyond the up to now documented effects of food quality on somatic growth and trophic transfer efficiency of herbivores: due to its effects on sexual reproduction and the production of resting eggs, food quality might influence genetic diversity and long-term persistence of Daphnia in lakes. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

17.
Nutrients, phytoplankton and periphyton were monitored in a 71 ha shallow, unstratified lake used for intensive cage culture of rainbow trout. Inorganic nitrogen, ortho-phosphate and suspended solids were significantly higher near the cages and the bottom and, although declining during summer, nutrients did not reach levels which limit phytoplankton growth. Microcystis aeruginosa dominated the phytoplankton, with surface chlorophyll a reaching 189 µg l–1 in August, but with no subsequent bloom collapse or deoxygenation. A sub-dominant community of vernal diatoms and Pediastrum spp. persisted. Periphyton was dominated by Melosira italica-subarctica. Algal species and water quality showed the lake to be highly eutrophic. Chlorophyll values predicted from a phosphorus-dependent eutrophication model agreed with observations but light limitation by self-shading and suspended farm wastes, aided by wind-induced turbulence, is believed to control algal growth rates and biomass. Implications for environmental management of intensive freshwater cage farms are discussed.  相似文献   

18.
Mismatches between predator and prey due to climate change have now been documented for a number of systems. Ultimately, a mismatch may have far-reaching consequences for ecosystem functioning as decoupling of trophic relationships results in trophic cascades. Here, we examine the potential for climate change induced mismatches between zooplankton and algae during spring succession, with a focus on Daphnia and its algal food. Whereas the development of an overwintering population of daphnids may parallel shifts in phytoplankton phenology due to climate warming, changes in the photoperiod–temperature interaction may cause the emerging population of daphnids to hatch too late and mismatch their phytoplankton prey. A decoupling of the trophic relationship between the keystone herbivore Daphnia and its algal prey can result in the absence of a spring clear water phase. We extended an existing minimal model of seasonal dynamics of Daphnia and algae and varied the way the Daphnia population is started in spring, i.e., from free swimming individuals or from hatching resting eggs. Our model results show that temperature affects the timing of peak abundance in Daphnia and algae, and subsequently the timing of the clear water phase. When a population is started from a small inoculum of hatching resting eggs, extreme climate warming (+6°C) results in a decoupling of trophic relationships and the clear water phase fails to occur. In the other scenarios, the trophic relationships between Daphnia and its algal food source remain intact. Analysis of 36 temperate lakes showed that shallow lakes have a higher potential for climate induced match–mismatches, as the probability of active overwintering daphnids decreases with lake depth. Future research should point out whether lake depth is a direct causal factor in determining the presence of active overwintering daphnids or merely indicative for underlying causal factors such as fish predation and macrophyte cover. Priority program of the German Research Foundation—contribution 5.  相似文献   

19.
Various species of Daphnia usually play a key role in the food web of temperate freshwater systems. There is much evidence to show that climate change may influence Daphnia population dynamics, consequently altering both predator–prey interactions and the efficiency of algal biomass control in these ecosystems. This review will analyse and discuss the current knowledge on Daphnia responses to climate warming based on an analysis of selected papers. The presented results indicate that warming may have important direct and indirect effects on Daphnia biology and ecology via its influence on their life-history processes (metabolism, growth, reproduction) and the properties of their habitats. The plasticity of daphnids in terms of adaptive responses is generally high and includes phenotypic adaptations and changes in genotypes, although it also depends upon the strength of selection and the available genetic variation. The seasonal timing and magnitude of temperature increases are important for seasonal biomass fluctuations of Daphnia and similarly influence the potential synchrony of daphnids and phytoplankton succession (the timing hypothesis). In light of the most recent studies on this topic, even a minor warming during short but critical seasonal periods can cause factors that disturb Daphnia population dynamics to coincide, which may destabilize lake food webs by decoupling trophic interactions. Both winter and spring are important critical periods for determining future seasonal fluxes of Daphnia spp. and, consequently, the time of the clear-water phase and the occurrence and duration of Daphnia midsummer decline. Winter conditions may also affect the impact of fish predation on daphnids during summer months. However, the effects of global warming on Daphnia population dynamics and on ecosystem functioning are often difficult to predict due to their complexity and the presence of both antagonistic and synergistic drivers. Thus, the diverse responses of daphnids to climate anomalies depend on both biotic (predator abundance and seasonal phytoplankton succession) and abiotic factors (e.g. hydrodynamics, intensity and duration of thermal stratification, trophic state or geomorphology) of lakes, which are directly influenced by weather changes. The analysis and quantification of such complex interactions require the involvement of different kinds of specialists and the development of accurate research approaches, such as molecular genetic methods or mathematical modelling.  相似文献   

20.
Cyanobacterial chemical warfare affects zooplankton community composition   总被引:5,自引:0,他引:5  
1. Toxic algal blooms widely affect our use of water resources both with respect to drinking water and recreation. However, it is not only humans, but also organisms living in freshwater and marine ecosystems that may be affected by algal toxins. 2. In order to assess if cyanobacterial toxins affect the composition of natural zooplankton communities, we quantified the temporal fluctuations in microcystin concentration and zooplankton community composition in six lakes. 3. Microcystin concentrations generally showed a bimodal pattern with peaks in early summer and in autumn, and total zooplankton biomass was negatively correlated with microcystin concentrations. Separating the zooplankton assemblages into finer taxonomic groups revealed that high microcystin concentrations were negatively correlated with Daphnia and calanoid copepods, but positively correlated with small, relatively inefficient phytoplankton feeders, such as cyclopoid copepods, Bosmina and rotifers. 4. In a complementary, mechanistic laboratory experiment using the natural phytoplankton communities from the six lakes, we showed that changes in in situ levels of microcystin were coupled with reduced adult size and diminished juvenile biomass in Daphnia. 5. We argue that in eutrophic lakes, large unselective herbivores, such as Daphnia, are ‘sandwiched’ between high fish predation and toxic food (cyanobacteria). In combination, these two mechanisms may explain why the zooplankton community in eutrophic lakes generally comprise small forms (e.g. rotifers and Bosmina) and selective raptorial feeders, such as cyclopoid copepods, whereas large, unselective herbivores, such as Daphnia, are rare. Hence, this cyanobacterial chemical warfare against herbivores may add to our knowledge on population and community dynamics among zooplankton in eutrophic systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号